B4 : Chứng minh M(-2;-6) là giao điểm của đồ thị hàm số y=(5-2m)x và đồ thị hàm số y=2x-2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có góc B4 + góc A3=180 độ (mà hai góc này ở vị trí trong cùng phía)
=> m//h <đpcm>
1:
BC=căn AB^2+AC^2=5cm
Xét ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2; CH*CB=CA^2
=>HB=3^2/5=1,8cm; CH=4^2/5=3,2cm
AH=căn 1,8*3,2=2,4(cm)
2: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=HE^2
ΔAHC vuông tại H có HF là đường cao
nên AF*FC=HF^2
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
AE*EB+AF*FC
=HE^2+HF^2
=EF^2
=AH^2
4:
BE*BA+CF*CA+2*HB*HC
=BH^2+CH^2+2*HB*HC
=(BH+CH)^2=BC^2
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b