oxy, \(\Delta\)ABC ,M (4;-1)\(\in\) AB , N(0;-5) \(\in\) AC , phương trình đường phân giác trong góc A là d : x-3y-5 =0 trọng tâm (\(\frac{-2}{3}\)\(\frac{-5}{3}\)). tìm A,B,C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
A B C H I D M K
Gọi M là trung điểm BC \(\Rightarrow IM\perp BC\)
Trên IA, lấy D đối xứng A qua I \(\Rightarrow AD\) là đường kính của đường tròn ngoại tiếp tam giác
Ta có \(BH\perp AC\) (H là trực tâm) và \(CD\perp AC\) (\(\widehat{ACD}\) nội tiếp chắn nửa đường tròn) \(\Rightarrow BH//CD\)
Lại có \(CH\perp AB\) (H là trực tâm) và \(BD\perp AB\) (\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CH//BD\)
\(\Rightarrow BHCD\) là hbh (2 cặp cạnh đối song song), mà M là trung điểm BC \(\Rightarrow M\) là trung điểm HD
Trong tam giác AHD có M là trung điểm HD, I là trung điểm AD \(\Rightarrow IM\) là đường trung bình \(\Rightarrow\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AH}\)
\(\overrightarrow{KH}=\left(0;2\right)\Rightarrow\) đường thẳng KH nhận \(\overrightarrow{n_{KH}}=\left(1;0\right)\) là 1 vtpt
\(\Rightarrow\) pt KH (hay AH) là: \(1\left(x-0\right)+0\left(y-4\right)=0\Leftrightarrow x=0\)
\(BC\perp KH\Rightarrow\overrightarrow{n_{BC}}.\overrightarrow{n_{KH}}=0\Rightarrow\) đường thẳng BC nhận \(\overrightarrow{n_{BC}}=\left(0;1\right)\) là 1 vtpt
\(\Rightarrow\) Pt BC: \(0\left(x-0\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
Do \(IM\perp BC\Rightarrow\)đường thẳng IM có 1 vtpt là \(\overrightarrow{n_{IM}}=\left(1;0\right)\)
\(\Rightarrow\) pt IM: \(1\left(x+2\right)+0\left(y+4\right)=0\Leftrightarrow x+2=0\)
M là giao điểm IM và BC \(\Rightarrow\) tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x+2=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(-2;2\right)\)
Theo cmt, do \(\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AH}\Rightarrow\left(0;6\right)=\frac{1}{2}\left(-x_A;4-y_A\right)\Rightarrow A\left(0;-8\right)\)
Do B thuộc \(y-2=0\Rightarrow B\left(a;2\right)\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_B=-4-a\\y_C=2y_M-y_B=2\end{matrix}\right.\)
\(\Rightarrow C\left(-4-a;2\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BH}=\left(-a;2\right)\\\overrightarrow{AC}=\left(-4-a;10\right)\end{matrix}\right.\)
\(BH\perp AC\Rightarrow\overrightarrow{BH}.\overrightarrow{AC}=0\Rightarrow-a\left(-4-a\right)+20=0\)
\(\Rightarrow a^2+4a+20=0\) (vô nghiệm) \(\Rightarrow\) không tồn tại B, C thỏa mãn
Bạn xem lại đề bài, có vẻ đề cho nhầm số liệu
Trước hết, ta đã biết nếu 2 đường tròn (O) và (O') cắt nhau tại A và B, thì \(OO'\perp AB\) (1)
A B C D O H E F M
\(\overrightarrow{n_{BC}}=\left(1;2\right)\), do \(AH\perp BC\Rightarrow AH\) có 1 vtpt \(\overrightarrow{n_{AH}}=\left(2;-1\right)\)
\(\Rightarrow\) Phương trình AH: \(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
Gọi I là trung điểm AH \(\Rightarrow I\) là tâm đường tròn ngoại tiếp tứ giác \(AEHF\) (E và F đều nhìn AH dưới 1 góc vuông)
Lại có O là tâm đường tròn ngoại tiếp tứ giác \(BCEF\) (E và F đều nhìn BC dưới một góc vuông)
Mà (O) và (I) cắt nhau tại E và F \(\Rightarrow OI\perp EF\) (theo (1))
Mà \(\overrightarrow{n_{EF}}=\left(2;-3\right)\Rightarrow\) đường thẳng OI có 1 vtpt là \(\overrightarrow{n_{OI}}=\left(3;2\right)\)
\(\Rightarrow\) pt đường thẳng OI: \(3\left(x-0\right)+2\left(y-0\right)=0\Leftrightarrow3x+2y=0\)
Do I là giao điểm của AH và OI \(\Rightarrow\) tọa độ I là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x+2y=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{-8}{7};\frac{12}{7}\right)\)
Do I là trung điểm AH
\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_I-x_H=\frac{-9}{7}\\y_A=2y_I-y_H=\frac{10}{7}\end{matrix}\right.\) \(\Rightarrow A\left(\frac{-9}{7};\frac{10}{7}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{-9}{7}\\b=\frac{10}{7}\end{matrix}\right.\) \(\Rightarrow7a+b=\frac{-53}{7}\)
bài 2)
xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)
\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )
\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )
=> đpcm
Câu 4:
\(\overrightarrow{AB}=\left(-6;-2\right)\)
\(\overrightarrow{AH}=\left(m+1;m+1\right)\)
Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)
=>1/-6=1/-2(loại)
Lời giải:
a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$
Vì \(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)
Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$
b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).
Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)
Vì \((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).
Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)
\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)
c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$
Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$
$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)
\(\Leftrightarrow 2-2a+2b=13-4a-6b\)
\(\Leftrightarrow 11-2a-8b=0(2)\)
Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)
con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào
Gọi \(M\left(0;a\right)\)
\(\Rightarrow\overrightarrow{MA}=\left(-2;-2-a\right);\) \(\overrightarrow{MB}=\left(0;3-a\right)\); \(\overrightarrow{MC}=\left(3;-a\right)\)
\(\Rightarrow\overrightarrow{MA}-\overrightarrow{MB}-2\overrightarrow{MC}=\left(-8;2a-5\right)\)
\(\Rightarrow\left|\overrightarrow{MA}-\overrightarrow{MB}-2\overrightarrow{MC}\right|=\sqrt{64+\left(2a-5\right)^2}\ge8\)
Dấu "=" xảy ra khi \(2a-5=0\Rightarrow a=\frac{5}{2}\Rightarrow M\left(0;\frac{5}{2}\right)\)
Câu 1:
a: Vì I thuộc trục Ox nên I(x;0)
\(\overrightarrow{AI}=\left(x+1;-1\right)\)
\(\overrightarrow{AB}=\left(1;2\right)\)
Vì A,I,B thẳng hàng nên \(\dfrac{x+1}{1}=-\dfrac{1}{2}\)
=>x=-3/2
b: \(\overrightarrow{AM}=\left(m+5;2m\right)\)
Vì A,M,B thẳng hàng nên \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)
=>m+5=m(vô lý)
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
Gọi N' là điểm đối xứng của N wa đg thẳng AD(D là chân đg phân giác),gọi giao điểm N'N và AD là I
\(\Rightarrow\)N'N:3x-y+5
Tọa độ điểm I là nghiệm của hệ \(\begin{cases}x-3y-5=0\\3x+y+5=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)\(\Rightarrow\)N'(-2,1)
Tương tự:M'(\(\frac{-48}{5},\frac{-21}{5}\)
Ta có:MN':x+3y-1=0
M'N:y=-5
tọa độ điểm A là nghiệm của hệ \(\begin{cases}x+3y-1=0\\y=-5\end{cases}\)
\(\Rightarrow\)A(16,-5)
Do G là trọng tâm nên \(\overrightarrow{AG}=2\overrightarrow{GE}\) (E(x,y) là trung điểm của BC)
\(\Rightarrow\begin{cases}\frac{-50}{3}=2x+\frac{4}{3}\\\frac{10}{3}=2y+3\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=0\end{cases}\)
B thuộc MN'\(\Rightarrow\) B\(\left(1-3b,b\right)\)
E là trung điểm BC \(\Rightarrow\) C(3b-19,-b)
Do C thuộc M'N\(\Rightarrow\) b=5
Suy ra B,C
trong wá trình làm có sai sót gì thì thông cảm