K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Đáp án C

15 tháng 11 2023

a:

Để (d1): y=(m-2/3)x+1 là hàm số bậc nhất thì m-2/3<>0

=>m<>2/3

Để (d2): y=(2-m)x-m là hàm số bậc nhất thì 2-m<>0

=>m<>2

Để hai đường thẳng cắt nhau thì \(m-\dfrac{2}{3}< >2-m\)

=>\(2m< >\dfrac{2}{3}+2=\dfrac{8}{3}\)

=>\(m< >\dfrac{4}{3}\)

b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\-m< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=2+\dfrac{2}{3}=\dfrac{8}{3}\\m< >-1\end{matrix}\right.\Leftrightarrow m=\dfrac{4}{3}\)

c: Thay x=4 vào y=(m-2/3)x+1, ta được:

\(y=4\left(m-\dfrac{2}{3}\right)+1=4m-\dfrac{8}{3}+1=4m-\dfrac{5}{3}\)

Thay x=4 và y=4m-5/3 vào y=(2-m)x-m, ta được:

\(4\left(2-m\right)-m=4m-\dfrac{5}{3}\)

=>\(8-5m=4m-\dfrac{5}{3}\)

=>\(-9m=-\dfrac{5}{3}-8=-\dfrac{29}{3}\)

=>\(m=\dfrac{29}{27}\)

d: Để hai đường cắt nhau tại 1 điểm trên trục tung thì \(\left\{{}\begin{matrix}-m=1\\m-\dfrac{2}{3}< >2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\2m< >\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow m=-1\)

e: Để hai đường cắt nhau tại trục hoành thì 

\(\left\{{}\begin{matrix}m-\dfrac{2}{3}< >2-m\\-\dfrac{1}{m-\dfrac{2}{3}}=\dfrac{-\left(-m\right)}{2-m}=\dfrac{m}{2-m}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m< >\dfrac{8}{3}\\-1\left(2-m\right)=m\left(m-\dfrac{2}{3}\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{2}{3}m=-2+m=m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{5}{3}m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\3m^2-5m+6=0\end{matrix}\right.\)

=>\(m\in\varnothing\)

31 tháng 12 2023

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

nên MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại K

Xét ΔOAM vuông tại A có AK là đường cao

nên \(OK\cdot OM=OA^2=R^2\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)

\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{KAI}\)

=>AI là phân giác của góc MAB

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>MK là phân giác của góc AMB

Xét ΔMAB có

MK,AI là các đường phân giác

MK cắt AI tại I

Do đó: I là tâm đường tròn nội tiếp ΔMAB

12 tháng 11 2021

\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

a:Sửa đề: y=x^3-3x^2+2

y'=3x^2-3*2x=3x^2-6x

y=2

=>x^3-3x^2=0

=>x=0 hoặc x=3

=>y'=0 hoặc y'=3*3^2-6*3=27-18=9

A(0;2); y'=0; y=2

Phương trình tiếp tuyến có dạng là;

y-2=0(x-0)

=>y=2

A(3;2); y'=9; y=2

Phương trình tiếp tuyến có dạng là:

y-2=9(x-3)

=>y=9x-27+2=9x-25

b: Tiếp tuyến tại M song song với y=6x+1

=>y'=6

=>3x^2-6x=6

=>x^2-2x=2

=>x=1+căn 3 hoặc x=1-căn 3

=>y=0 hoặc y=0

M(1+căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1-căn 3)=6x-6-6căn3

M(1-căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1+căn 3)

=>y=6x-6+6căn 3