Tại điểm M(-2;-4) thuộc đồ thị hàm số y = a x + 2 b x + 3 tiếp tuyến của đồ thị song song với đường thẳng 7 x − y + 5 = 0 . Tính tích ab
A. ab = 2
B. ab = -2
C. ab = 3
D. ab = -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Để (d1): y=(m-2/3)x+1 là hàm số bậc nhất thì m-2/3<>0
=>m<>2/3
Để (d2): y=(2-m)x-m là hàm số bậc nhất thì 2-m<>0
=>m<>2
Để hai đường thẳng cắt nhau thì \(m-\dfrac{2}{3}< >2-m\)
=>\(2m< >\dfrac{2}{3}+2=\dfrac{8}{3}\)
=>\(m< >\dfrac{4}{3}\)
b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\-m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=2+\dfrac{2}{3}=\dfrac{8}{3}\\m< >-1\end{matrix}\right.\Leftrightarrow m=\dfrac{4}{3}\)
c: Thay x=4 vào y=(m-2/3)x+1, ta được:
\(y=4\left(m-\dfrac{2}{3}\right)+1=4m-\dfrac{8}{3}+1=4m-\dfrac{5}{3}\)
Thay x=4 và y=4m-5/3 vào y=(2-m)x-m, ta được:
\(4\left(2-m\right)-m=4m-\dfrac{5}{3}\)
=>\(8-5m=4m-\dfrac{5}{3}\)
=>\(-9m=-\dfrac{5}{3}-8=-\dfrac{29}{3}\)
=>\(m=\dfrac{29}{27}\)
d: Để hai đường cắt nhau tại 1 điểm trên trục tung thì \(\left\{{}\begin{matrix}-m=1\\m-\dfrac{2}{3}< >2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\2m< >\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow m=-1\)
e: Để hai đường cắt nhau tại trục hoành thì
\(\left\{{}\begin{matrix}m-\dfrac{2}{3}< >2-m\\-\dfrac{1}{m-\dfrac{2}{3}}=\dfrac{-\left(-m\right)}{2-m}=\dfrac{m}{2-m}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m< >\dfrac{8}{3}\\-1\left(2-m\right)=m\left(m-\dfrac{2}{3}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{2}{3}m=-2+m=m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{5}{3}m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\3m^2-5m+6=0\end{matrix}\right.\)
=>\(m\in\varnothing\)
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại K
Xét ΔOAM vuông tại A có AK là đường cao
nên \(OK\cdot OM=OA^2=R^2\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)
\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)
mà \(\widehat{OAI}=\widehat{OIA}\)
nên \(\widehat{MAI}=\widehat{KAI}\)
=>AI là phân giác của góc MAB
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>MK là phân giác của góc AMB
Xét ΔMAB có
MK,AI là các đường phân giác
MK cắt AI tại I
Do đó: I là tâm đường tròn nội tiếp ΔMAB
\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)
a) Thay x=4 vào (P), ta được:
\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)
Thay x=4 và y=8 vào (d), ta được:
\(m\cdot4-m+2=8\)
\(\Leftrightarrow3m=6\)
hay m=2
Vậy: m=2
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)
\(=m^2-2\left(m-2\right)\)
\(=m^2-2m+4\)
\(=m^2-2m+1+3\)
\(=\left(m-1\right)^2+3>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)
a:Sửa đề: y=x^3-3x^2+2
y'=3x^2-3*2x=3x^2-6x
y=2
=>x^3-3x^2=0
=>x=0 hoặc x=3
=>y'=0 hoặc y'=3*3^2-6*3=27-18=9
A(0;2); y'=0; y=2
Phương trình tiếp tuyến có dạng là;
y-2=0(x-0)
=>y=2
A(3;2); y'=9; y=2
Phương trình tiếp tuyến có dạng là:
y-2=9(x-3)
=>y=9x-27+2=9x-25
b: Tiếp tuyến tại M song song với y=6x+1
=>y'=6
=>3x^2-6x=6
=>x^2-2x=2
=>x=1+căn 3 hoặc x=1-căn 3
=>y=0 hoặc y=0
M(1+căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1-căn 3)=6x-6-6căn3
M(1-căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1+căn 3)
=>y=6x-6+6căn 3
Đáp án C