Trong không gian Oxyz, đường thẳng △ đi qua M(1;2;-3) nhận vectơ u → = ( - 1 ; 2 ; 1 ) làm vectơ chỉ phương có phương trình là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Đường thẳng đi qua M x 0 ; y 0 ; z 0 và có VTCP là u → =(a;b;c) có phương trình chính tắc:
Cách giải: Đường thẳng d đi qua M(2;0;-1) và có VTCP là u → =(2;-3;1) có phương trình chính tắc:
Đáp án A
Gọi A = d ∩ d 2 . Ta có A ∈ d 2 => A(-1; a; a+ 1).
Theo giả thiết:
Thay vào (*) ta được:
-1.3 + (a - 1).1 + a.1 = 0 <=> 2a - 4 = 0 <=> a = 2 <=> u d → = MA → = (-1; 1; 2)
Vậy phương trình chính tắc của đường thẳng d là:
Vậy đáp án đúng là A.
Đáp án D
∆ có véc tơ chỉ phương là u → = 2 ; 1 - 1 . Gọi N là giao điểm của d và ∆ ⇒ N 2 t + 1 ; t - 1 ; - t
Theo đề bài ta sẽ có: u → . M N → = 0 ⇔ t = 2 3 ⇒ M N → = 1 3 ; - 4 3 ; - 2 3 ⇒ d : x - 2 1 = y - 1 - 4 = z - 2
Đáp án B
Đường thẳng ∆ có vecto chỉ phương u → (2; -3; 2)
Đường thẳng d đi qua M(4;3;1) và song song với đường thẳng ∆ nên có vecto chỉ phương là u → (2; -3; 2). Phương trình chính tắc của đường thẳng d là:
Chọn D
Phương pháp:
Phương trình tham số của đường thẳng đi qua điểm
Chọn D.
Phương pháp:
Phương trình tham số của đường thẳng đi qua điểm
Đáp án D.