K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

2012(x + y) = 2013(y + z) = 2014 (z + x)

\(=\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}=\frac{\left(z+x\right)-\left(y+z\right)}{\frac{1}{2014}-\frac{1}{2013}}=\frac{\left(y+z\right)-\left(x+y\right)}{\frac{1}{2013}-\frac{1}{2012}}\)

\(=\frac{x-y}{\frac{-1}{2013.2014}}=\frac{z-x}{\frac{-1}{2012.2013}}\)

= (x - y).(-2013.2014) = (z - x).(-2012.2013)

=> (x - y).(-2013.2014).\(\frac{-1}{2013.2014.1006}\) = (z - x).(-2012.2013).\(\frac{-1}{2013.2014.1006}\)

\(\Rightarrow\frac{x-y}{1006}=\frac{z-x}{1007}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

$A=x+\frac{x^2-9}{x-3}=x+(x+3)=2x+3$ không có GTNN với điều kiện đã cho bạn nhé.

NV
15 tháng 1 2024

\(x^3+y^3=8-6xy\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-8+6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-2^3-3xy\left(x+y-2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]-3xy\left(x+y-2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+4\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(2x^2+2y^2-2xy+4x+4y+8\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x-y\right)^2=\left(x+2\right)^2=\left(y+2\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x=y=-2\left(loại\right)\end{matrix}\right.\)

14 tháng 1 2019

- Hàm số đã cho xác định trên R.

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Vậy với mọi m, hàm số đã cho không liên tục tại x = 3.

Do đó đáp án đúng là A.

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

14 tháng 10 2021

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)

\(=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

22 tháng 12 2021

\(\Leftrightarrow a-9=0\)

hay a=9

22 tháng 12 2021

giải thích rõ hơn cho mk đc ko

 

15 tháng 9 2020

Nhận xét: f(x) là đơn ánh.

Thật vậy, giả sử f(x1)=f(x2) thì: f(f(x1)+2y)=f(f(x2)+2y)

=> 4x1+4y+3=4x2+4y+3<=>x1=x2. Vậy f là đơn ánh

Ta có: f(f(x)+2y)=4x+4y+3=f(f(y)+2x)

Vì f là đơn ánh nên: f(x)+2x=f(y)+2x hay f(x)-2x=f(y)-2y. Với mọi x,y thuộc R

Do đó: f(x)-2x=c, c thuộc R. Thay f(x)=2x+c vào điều kiện ta có c=1

Vậy f(x)=2x+1 (TMĐK)

b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0

Đặt a=3x-2; b=-2x-3

Pt sẽ trở thành:

a^5+b^5-(a+b)^5=0

=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0

=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0

=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0

=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2+2ab)=0

=>-5ab(a+b)(a^2+b^2+ab)=0

=>ab(a+b)=0

=>(3x-2)(-2x-3)(5-x)=0

=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)

6 tháng 8 2023

bn oi, con cau a nx ma