tìm hệ số a >0 sao cho đường thẳng y=ax; y=1; y=5 và trục tung tạo thành hình thang có diện tích =8 (đvdt)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:
\(a\cdot1+-1\left(2a-1\right)+3=0\)
\(\Leftrightarrow a-2a+1+3=0\)
\(\Leftrightarrow a-2a+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)
Do đó phương trình ban đầu vô nghiệm
Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M
Đáp án C
Đường thẳng (d) đi qua A(0; 1) nên ta có: 1 = a.0 + b ⇒ b = 1
Mà đường thẳng (d) song song với đường thẳng (d') và hệ số góc của (d') là 2.
Khi đó ta có: a = 2
Vậy giá trị cần tìm là a = 2, b = 1
Đáp án B
Đường thẳng d: y = ax + b (a ≠ 0) có a là hệ số góc.
Đường thẳng d có phương trình y = a x + b ( a ≠ 0 ) có a là hệ số góc
Đáp án cần chọn là: B
Đáp án B
Đường thẳng d: y = ax + b (a ≠ 0) có a là hệ số góc.
1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)
\(\Leftrightarrow A\left(-1;0\right)\)
Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths
2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)
Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)
Vậy đths là \(y=2x+5\)
3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)
PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)
Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)
Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)
Bài I (3,0 điểm) Cho hai biểu thức A= x−9 và B= 3 + 2 +x−5 x−3 với x 0,x 9.
x−3 x−3 x+3 x−9
1) Khi x=81, tính giá trị của biểu thức A.
2) Rút gọn biểu thức B.
3) Tìm x để A = 5.
4) Với x 9, tìm giá trị nhỏ nhất của biểu thức P AB= .
giải giúp nốt cho minh luon nhe
h = 4
A(1/a;1);B(5/a;5)
S=(1/a + 5/a).h:2=> 6/a =4=> a = 3/2
mình lại ra 1