K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

Tại $x=1; y=-1$ thì $xy=-1$

$xy+(xy)^2+(xy)^3+...+(xy)^{10}$

$=(-1)+(-1)^2+(-1)^3+...+(-1)^{10}=(-1)+1+(-1)+1+(-1)+1+(-1)+1+(-1)+1=0$

28 tháng 4 2018

Ta có: xy + x2y2 + x3y3 + ….. + x10y10

      = xy + (xy)2 + (xy)3 + ….. + (xy)10

Với x = -1 và y = 1 ta có: xy = -1.1 = -1

Thay vào đa thức:

-1 + (-1)2 + (-1)3 + ….. + (-1)10 = -1 + 1 + (-1) + 1 + … + (-1) + 1 = 0

3 tháng 10 2018

Thay x = 1, y = -1 vào A ta có A = -1. Chọn C

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:

$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$

$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$

16 tháng 9 2018

Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8

Thay x = –1 ; y = –1 vào biểu thức.

B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8

= + 1 – 1.1 + 1.1 – 1.1+ 1.1

= 1 – 1 + 1 – 1 + 1

= 1

Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.

Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1

21 tháng 8 2018

 

Đáp án D

Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0   (*)

Đặt x + y = u x y = v  ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0  gải ra ta được  u = v + 2 + v 2 + 28 v + 4 4

Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18  , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18  ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0  với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 )  trong đó t 0 = m i n t = m i n ( x y + y x )  với x,y thỏa mãn điều kiện (*).

Ta có :

t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2

Vậy  m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4

 

17 tháng 6 2019

Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2

⇒ M + N = (x3 + xy + y2 – x2y2 – 2) + (x2y2 + 5 – y2)

= x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 + (– x2y2 + x2y2) + (y2 – y2) + xy + (– 2 + 5)

= x3 + 0 + 0 + xy + 3

= x3 + xy + 3.

21 tháng 8 2019

(5x2y – 5xy2 + xy) + (xy – x2y2 + 5xy2)

= 5x2y – 5xy2 + xy + xy – x2y2 + 5xy2

= 5x2y + (5xy2 – 5xy2) + (xy + xy) – x2y2

= 5x2y + 2xy – x2y2

19 tháng 1 2019

Thay tại x = 1 và y = -1 vào đa thức, ta có:

12.(-1)2 + 14.(-1)4 + 16.(-1)6 = 1.1 + 1.1 + 1.1 = 3

Bài 3: 

a: Ta có: C=A+B

\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)

\(=2x^2-y+xy-x^2y^2\)

b: Ta có: C+A=B

\(\Leftrightarrow C=B-A\)

\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)

\(=-x^2y^2+3y-xy-2\)