Chứng minh rằng các số x, y là hai số tự nhiên liên tiếp biết:
x= 1+2+2^2+2^4+2^6+...+2^2010; y= 2^2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(X=1+2^2+2^4+.....+2^{2010}\)
\(\Rightarrow2^2X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X-X=2^{2012}-1\)
\(3X=2^{2012}-1\)
\(X=\frac{2^{2012}-1}{3}\) (sai đề nhé )
ta có: X=\(1+2+2^2...2^{2010}\Rightarrow2X=2+2^2+...2^{2011}\)
\(\Rightarrow2X-X=\left(2+2^2...2^{2011}\right)-\left(1+2+...2^{2010}\right)\)
\(\Rightarrow X=2^{2011}-1\)
xét hiêu Y-X=\(2^{2011}-\left(2^{2011}-1\right)=1\)
vậy X,Y là 2 số tự nhiên liên tiếp
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
Ta có
2x=2+2^2+2^3+...+2^2016
=>2x-x=(2+2^2+2^3+...+2^2016)-(1+2+2^2+...+2^2015)
=>x=2^2016-1
Mà y =2016
Nên x,y là 2 so tu nhien lien tiep
\(x=1+2+2^2+....+2^{2015}\)
\(2x=2+2^3+2^4+...+2^{2016}\)
\(2x-x=\left(2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+....+2^{2015}\right)\)
\(x=2^{2016}-1\)
Vì \(x=2^{2016}-1;y=2^{2016}\)
Vậy x và y là 2 số tự nhiên tiếp nhau
x = 1+2+22+23+.....+22015
2x = 2+22+23+24+....+22016
2x- x = 22016 - 1
=> x = 22016 - 1
Có y - x = 22016 - (22016 - 1) = 1
=> x và y là 2 số tự nhiên liên tiếp (Đpcm)
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
x = 1+2+2^2+2^4+2^6+...+2^2010
2x = 2+2^2+.....+2^2011
2x-x = 2^2011 - 1 = x
y = 2^2011
=> ĐCCM