1. Tìm cosin góc giữa 2 đg thẳng denta 1: 10x +5y -1=0 và denta 2 : x = 2+t ; y= 1-t
A. 3/10
B. √10 /10
C. 3√10 / 10
D. 3/5
2. Tìm cosin góc giữa hai đg thẳng denta 1: x +2y - √2=0 và denta 2: x -y =0
A. √10 /10
B. √2
C. √2 /3
D. √3 /3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
Bài 1:
\(\overrightarrow{u_{\Delta1}}=\left(2;-3\right)\Rightarrow\overrightarrow{n_{\Delta1}}=\left(3;2\right)\)
\(\Rightarrow\Delta_1:3\left(x-4\right)+2\left(y-1\right)=0\)
\(\Delta_1:3x+2y-14=0\)
\(\Rightarrow\Delta_1\equiv\Delta_2\)
Bài 6:
\(\frac{11}{12}\ne-\frac{12}{11}\Rightarrow\Delta_1\equiv\Delta_2\)
Bài 10:
\(\overrightarrow{AB}=\overrightarrow{u_{AB}}=\left(4;2\right)\)
33.
Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt
\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)
41.
\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt
\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt
Để 2 đường thẳng cắt nhau
\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)
Vậy hai đường thẳng cắt nhau với mọi m
21.
\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:
\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
31.
\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp
\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt
Để hai đường thẳng song song:
\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)
\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)
Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)
\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)
\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)
Lời giải:
Gọi $M(x,y)\in \Delta$ thì $M'(x', y')\in \Delta'$ thỏa mãn:
\(T_{\overrightarrow{u}}M'=M\)
\(\Leftrightarrow \overrightarrow{M'M}=\overrightarrow{u}\)
\(\Leftrightarrow (x-x', y-y')=(-4,1)\Leftrightarrow x=x'-4; y=y'+1\)
Thay vào PT $\Delta$:
$x'-4+1=2(y'+1)$
$\Leftrightarrow x'-2y'-5=0$
Đây chính là ptđt $\Delta'$
Chắc bạn ghi nhầm đề bài
Hai đường thẳng này ko song song nên không tồn tại khoảng cách giữa chúng
2.
Vecto pháp tuyến của $\Delta_1$: \(\overrightarrow{n_1}=(1,2)\)
Vecto pháp tuyến của $\Delta_2$: \(\overrightarrow{n_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng
\(\cos (\Delta_1,\Delta_2)=\frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}=\frac{|1.1+2(-1)|}{\sqrt{1^2+2^2}.\sqrt{1^2+(-1)^2}}=\frac{\sqrt{10}}{10}\)
Đáp án A
1.
Vecto pháp tuyến của $\Delta_1: (10,5)$
$\Rightarrow$ vecto chỉ phương \(\overrightarrow{u_1}=(-5,10)\)
Vecto chỉ phương của $\Delta_2$ \(\overrightarrow{u_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng:
\(\cos (\overrightarrow{u_1},\overrightarrow{u_2})=\frac{|\overrightarrow{u_1}.\overrightarrow{u_2}|}{|\overrightarrow{u_1}||\overrightarrow{u_2}|}=\frac{|-5.1+10(-1)|}{\sqrt{(-5)^2+10^2}.\sqrt{1^2+(-1)^2}}=\frac{3\sqrt{10}}{10}\)