Tìm tất cả các số hữu tỉ x; y sao cho :
a) x - y = 2( x + y ) = x : y
Có làm thì mới có tick...........................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)
Mà x>0 nên \(x\in\left\{1,2\right\}\)
\(\frac{2}{x}\)là số nguyên thì \(x\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)
Mà x > 0 \(\Rightarrow x=\left(1;2\right)\)
\(\frac{2}{x}\)là số nguyên \(\Leftrightarrow x\inƯ\left(2\right)=\left\{-2;-2;1;2\right\}\)
Mà \(x>0\Rightarrow x\in\left\{1;2\right\}\)
Rất vui vì giúp đc bạn <3
ĐK: y khác 0
Từ x - y = 2*(x + y) => x = -3y => x:y = -3
Nên -3y - y = -3 => y = 3/4; x = -9/4
\(\left(\dfrac{2}{5}-3x\right)^2-\dfrac{1}{5}=\dfrac{4}{25}\)
\(\Rightarrow\left(\dfrac{2}{5}-3x\right)^2=\dfrac{4}{25}+\dfrac{1}{5}=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)
A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên
3 ⋮ x - 2
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)
Xét x - y = 2. (x + y)
=> x - y = 2x + 2y => x - 2x = 2y + y => -x = 2y (1)
Xét x - y = x : y
=> =[y + (-x)] = x : y => -(y + 2y) = x : y => -3y = x : y => x = -3y2 => -x = 3y2 (2)
Từ (1) và (2) => 2y = 3y2 <=> y = 0
Mà y khác 0 vì y là số chia trong x : y
Vậy ko có cặp số x;y nào thỏa mãn đề bài
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
Thay vào :\(2\left(x+y\right)=\frac{x}{y}\)được \(-4y=\frac{-3y}{y}\)
\(< =>y=\frac{3}{4}=>x=\frac{-9}{4}\)
Vậy :\(x=\frac{-9}{4};y=\frac{3}{4}\)