K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :

A. 11 B. -7 C. 7 D. 2

2. Bậc của đơn thức (- 2x3) 3x4y là :

A.3 B. 5 C. 7 D. 8

3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:

A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c

4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:

A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm

C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm

6 tháng 3 2018

a)

Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)

Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)

b)

Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)

6 tháng 9 2020

Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)

Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0

b)

Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

C=7x^2y+3y^2z-4x^6+4x^6

=7x^2y+3y^2z

=7*2^2*1+3*1*z

=3z+28

`@` `\text {Ans}`

`\downarrow`

`C = 7x^2y - 4x^6 + 3y^2z + 4x^6`

`= 7x^2y + (-4x^6 + 4x^6) + 3y^2z`

`= 7x^2y + 3y^2 z`

Thay `x = 2; y = 1` (riêng z = bao nhiêu nhỉ?)

`7*2^2 * 1 + 3*1^2 * z`

`= 28 + 3z`

a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3

b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8

2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24

4/5x^3y=4/5*(-1)^3*(-3)=12/5

A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5

 

30 tháng 5 2023

a) \(\left(-\dfrac{3}{8}x^2z\right).\left(\dfrac{2}{3}xy^2z^2\right).\dfrac{4}{5}x^3y=-\dfrac{1}{5}x^6y^3z^3\)

b) Gía trị đơn thức :

\(-\dfrac{1}{5}.\left(-1\right)^6\left(-2\right)^3.3^3=-\dfrac{1}{5}.1.\left(8\right).27=\dfrac{216}{5}\)

13 tháng 6 2023

a.A=xy+x2y2+x3y3...+x100y100

-1.-1+-12.-12+-13.-13+....+-1100-1100

=1+1+-1+....+1

=1+0+0+...+0+1

=1+1=2

b.

B=xyz=x2y2z2+x3y3z3+....+x10y10z10

thay x=-1;y=-1;z=-1

B=(-1).(-1).(-1)=(-1)2.(-1)2.(-1)2+(-1)3.(-1)3.(-1)3+....+(-1)10.(-1)10.(-1)10

B=-1=1+(-1)+...+1

B=-1=0+...+0

B=0

30 tháng 5 2023

Bài tập `17`

`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?

\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)

`b,` Tại `x=-1 ; y=-2;z=-3`

Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)

30 tháng 5 2023

\(-\dfrac{1}{5}x^6y^3z^3=-\dfrac{1}{5}\left(-1\right)^6.\left(-2\right)^3.\left(-3\right)^3=-\dfrac{1}{5}.1.\left(-8\right).\left(-27\right)=\dfrac{216}{5}\)

tớ bổ sung ... tớ quên ạa

25 tháng 3 2018

a, x.y +x2y2 + x3y3+ .... + x10y10

= x.y. ( 1 + 12 + 13 + ..... + 110 )

= x.y. ( 1 + 1 + 1 + ...... + 1 )

= x.y.10

Thay x=-1, y=1 vào đa thức vừa tìm được ở trên, ta có:

(-1) . 1 . 10 = -10

Vậy giá trị của đa thức vừa tìm được là -10 khi x=-1, y=1

b, xyz + x2y2z2 + x3y3+.....+ x10y10

= xyz ( 1 + 12 + 13 + ..... + 110 )

= xyz ( 1 + 1 + 1 + ... + 1 )

= xyz .10

Thay x=1, y=-1, z=-1 vào đa thức vừa tìm được, ta có:

1 . (-1) . (-1) . 10 = 10

Vậy giá trị của đa thức vừa tìm được là 10 khi x=1, y=-1, z=-1

6 tháng 4 2017

= \(\left(\dfrac{-1}{2}xy^2z-\dfrac{2}{3}xy^2z+xy^2z\right)+\left(3x^2y^2-\dfrac{1}{3}x^2y^2\right)+2xy^2\)

= \(\dfrac{-1}{6}xy^2z+\dfrac{8}{3}x^2y^2+2xy^2\)

Thay x = -2, y = 1, z = 3 vào biểu thức, có:

\(\dfrac{-1}{6}.\left(-2\right).1^2.3+\dfrac{8}{3}.\left(-2\right)^2.1^2+2\left(-2\right).1^2\)

= 1 + \(\dfrac{32}{3}\) - 4

= \(\dfrac{23}{3}\)

Vậy GTBT trên là \(\dfrac{23}{3}\)tại x = -2, y = 1, z = 3

7 tháng 4 2017

giá trị của đa thức đó là: 23/3

26 tháng 10 2023

a: Q=M+N

\(=5x^2y+5x+3-3xy^2z+xy^2z-4x^2y+5x-5\)

\(=x^2y+10x-2-2xy^2z\)

\(P=M-N\)

\(=5x^2y+5x+3-3xy^2z-xy^2z+4x^2y-5x+5\)

\(=9x^2y+8-4xy^2z\)

H=N-M

=-(M-N)

\(=-9x^2y-8+4xy^2z\)

b: \(Q=x^2y+10x-2-2xy^2z\)

=>Q có bậc là 4

\(P=9x^2y+8-4xy^2z\)

=>P có bậc là 4

\(H=-9x^2y-8+4xy^2z\)

=>H có bậc là 4

c: Khi x=-1;y=3;z=-2 thì

\(Q=\left(-1\right)^2\cdot3+10\cdot\left(-1\right)-2-2\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=3-10-2+2\cdot9\cdot\left(-2\right)\)

\(=-9-36=-45\)

Khi x=-1;y=3;z=-2 thì \(P=9\cdot\left(-1\right)^2\cdot3+8-4\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=27+8+4\cdot9\cdot\left(-2\right)\)

\(=35-72=-37\)

H=-P

=>H=37

10 tháng 8 2020

Bài làm:

a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)

\(=-\frac{1}{5}x^6y^3z^3\)

b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:

\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)

10 tháng 8 2020

a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)

b) Với x = -1 ; y = -2 , z = 3

Thế vào ba đơn thức trên và đơn thức tích ta được :

\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)

\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)

\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)

\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

P + Q = (-5x4 +3x3 + 7x2 + x – 3) + (5x4 – 4x3 – x2 + 3x + 3)

= -5x4 +3x3 + 7x2 + x – 3 + 5x4 – 4x3 – x2 + 3x + 3

= (-5x4 + 5x4 ) + (3x3 – 4x3 ) + (7x2 – x2 ) + (x + 3x) + (-3 + 3)

 = 0 + (-x3) + 6x2 +4x

= -x3 + 6x2 +4x

P – Q = (-5x4 +3x3 + 7x2 + x – 3) - (5x4 – 4x3 – x2 + 3x + 3)

= -5x4 +3x3 + 7x2 + x – 3 - 5x4 + 4x3 + x2 - 3x - 3

= (-5x4 - 5x4 ) + (3x3 + 4x3 ) + (7x2 + x2 ) + (x - 3x) + (-3 - 3)

 = -10x4 + 7x3 + 8x2 + (-2x) + (-6)

= -10x4 + 7x3 + 8x2 – 2x – 6

a) Đa thức P + Q có bậc là 3

Đa thức P – Q có bậc là 4

b) +) Tại x = 1 thì P + Q = - 13 + 6. 12 + 4.1 = 9

P – Q = -10. 14 + 7.13 + 8.12 – 2. 1 – 6 = -3

+) Tại x = - 1 thì P + Q = - (-1)3 + 6. (-1)2 + 4.(-1) = -(-1) + 6.1 - 4 = 3

P – Q = -10. (-1)4 + 7.(-1)3 + 8.(-1)2 – 2. (-1) – 6 = -10 . 1 + 7.(-1) + 8 + 2 – 6 = -13

c) Đa thức P + Q có nghiệm là x = 0 vì đa thức này có hệ số tự do bằng 0.