K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

`A = (-1/16x^2y^2).4x^3`

`A = (-1/16 . 4)(x^2 . x^3 )y^2`

`A = -1/4x^5y^2`

`b)` Thay `x = 1` ; `y=-4` vào `A`. Ta có:

   `A = -1/4 . 1^5 . (-4)^2 = -1/4 . 1 . 16 = -4`

6 tháng 5 2022

\(A=\left(-\dfrac{1}{16}.4\right)\left(x^2.x^3\right)y^2=-\dfrac{1}{4}x^5y^2\)

thay x = 1; y = -4 vào A ta đc

\(A=-\dfrac{1}{4}.1^5.\left(-4\right)^2=-\dfrac{1}{4}.1.16=-4\)

a: B=1/6x^3y^5

b: Khi x=1 và y=-1 thì B=1/6*1^3*(-1)^5=-1/6

a: \(A=\dfrac{6}{7}x^2y^2\cdot\dfrac{-7}{2}x^2y=-3x^4y^3\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{-2}=\dfrac{y}{3}=\dfrac{x-y}{-2-3}=\dfrac{5}{-5}=-1\)

Do đó: x=2; y=-3

\(A=-3x^4y^3=-3\cdot2^4\cdot\left(-3\right)^3=3\cdot27\cdot16=81\cdot16=1296\)

6 tháng 3 2022

\(A=\dfrac{6}{7}x^2y^2.\left(-3\dfrac{1}{2}x^2y\right)\)

\(=\dfrac{6}{7}x^2y^2.\left(-\dfrac{7}{2}\right)x^2y\)

\(=-3x^4y^3\)

b)Có: \(\dfrac{x}{y}=-\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{-y}{3}=\dfrac{x-y}{2+3}=\dfrac{5}{5}=1\)

\(\Rightarrow x=2;y=-3\)

Tại \(x=2;y=-3\) , giá trị của biểu thức là:

 \(-3.2^4.\left(-3\right)^3=-3.16.\left(-27\right)=1296\)

a: C=1/3*36x^4y^4*1/2x^3y=6x^7y^5

b: Khi x=1 và y=-1 thì C=-6

a: A=-2/3x^4y^3

Hệ số: -2/3

Bậc: 7

b: Khi x=-1 và y=1 thì A=-2/3

a: D=-1/3x^4y^3

Hệ số: -1/3

Biến; x^4;y^3

b: khi x=1 và y=2 thì D=-1/3*1^4*2^3=-8/3

6 tháng 5 2022

\(a.A=\left(-\dfrac{1}{16}x^2y^2\right).4x^3=\dfrac{-1}{4}x^5y^2\)

bậc của a là:7

6 tháng 5 2022

A=(−116x2y2)⋅4x3=−14x5y2A=(−116x2y2)⋅4x3=−14x5y2

Bậc của a là 7.

6 tháng 3 2022

\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)

NV
11 tháng 7 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(x-1\right)^2}{4x}\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{4x}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

\(\left|x-5\right|=4\Rightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\sqrt{9}+1}{2\sqrt{9}}=\dfrac{2}{3}\)

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4