cho x/2 = y/3 ; y/4 = z/5 tính x+y+z / 2x+3y+4z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
ta có: \(x^2+y^2=4\Leftrightarrow\left(x^2+2xy+y^2\right)-2xy=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow9-2xy=4\Leftrightarrow-xy=-\frac{5}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(4-xy\right)=3\left(4-\frac{5}{2}\right)=\frac{9}{2}\)
câu 2: tương tự ở trên tính xy rồi lắp vào hằng đẳng thức: \(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)
a, x + y = 3 => (x + y)2 = 9 <=> x2 + 2xy + y2 = 9 <=> 5 + 2xy = 9 <=> 2xy = 4 <=> xy = 2
Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9
b, x - y = 5 => (x - y)2 = 25 <=> x2 - 2xy + y2 = 25 <=> 15 - 2xy = 25 <=> -2xy = 10 <=> xy = -5
Ta có: x3 - y3 = (x - y)(x2 + xy + y2) = 5 . (15 - 5) = 5 . 10 = 50
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^2-3xy=1+3=4\)
\(Q=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)=-\left(x+y\right)^2=-1\)
x^3 +y^3
=(x+y)^3
=1
Q=2(x^3 +y^3 )-3(x^2 +y^2)
=2(x+y)^3-3(x+y)^2
Thay x+y=1 vào đa thức Q có:
=2.1-3.1
=-1
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải
(x+y)^2=x^2+y^2+2xy => xy= -3
x^3+y^3=(x+y)^3-3xy(x+y) = 26
2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)
(x+y)^2=a^2
=> x^2 +2xy +y^2=a^2
=> b+2xy=a^2
=> xy=\(\frac{a^2-b}{2}\)
Thay (1) vào đó ta có:
x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)
a) Ta có : \(\left(x+y\right)^3=1^3=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\) ( do x + y = 1 )
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{2x}{16}=\dfrac{3y}{36}=\dfrac{4z}{60}=\dfrac{x+y+z}{35}=\dfrac{2x+3y+4z}{112}\\ \Rightarrow\dfrac{x+y+z}{2x+3y+4z}=\dfrac{35}{112}=\dfrac{5}{16}\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x}{8}=\dfrac{y}{12};\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
* \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{8+12+15}=\dfrac{x+y+z}{45}\) (1)
* \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{2x}{16}=\dfrac{3y}{36}=\dfrac{4z}{60}=\dfrac{2x+3y+4z}{16+36+60}=\dfrac{2x+3y+4z}{112}\) (2)
(1)(2)=> \(\dfrac{x+y+z}{45}=\dfrac{2x+3y+4z}{112}=\dfrac{x+y+z}{2x+3y+4z}=\dfrac{45}{112}\)
=> A = \(\dfrac{45}{112}\)