K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Chọn D

Đường thẳng d₁ đi qua điểm M₁ = (3;-1;-1) và có một véctơ chỉ phương là 

Đường thẳng d₂ đi qua điểm M₂ = (0;0;1) và có một véctơ chỉ phương là 

Do  và M₁ d₁ nên hai đường thẳng d₁ và d₂ song song với nhau.

Gọi (α) là mặt phẳng chứa d₁ và d₂ khi đó (α) có một véctơ pháp tuyến là . Phương trình mặt phẳng (α) là x+y+z-1=0.

 

Do  không cùng phương với  nên đường thẳng AB cắt hai đường thẳng d₁ và d₂.

7 tháng 5 2018

Chọn D

Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là 

Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là 

Do   M1 d1 nên hai đường thẳng d1 d2 song song với nhau.

 

Gọi (α) là mặt phẳng chứa d1 d2 khi đó (α) có một véctơ pháp tuyến là

Phương trình mặt phẳng (α)  x + y + z -1 = 0

Gọi A = d (α) thì A (1; -1; 1)

Gọi B = d4 (α) thì B (-1; 2; 0)

Do  không cùng phương với  nên đường thẳng AB cắt hai đường thẳng d1 d2.

23 tháng 11 2017

Chọn A

Ta có d1 song song d2, phương trình mặt phẳng chứa hai đường thẳng d1d2 

 cùng phương với véc-tơ chỉ phương của hai đường thẳng d1d2 nên không tồn tại đường thẳng nào đồng thời cắt cả bốn đường thẳng trên.

NV
14 tháng 12 2020

Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)

\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Ta có:

\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)

Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)

Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)

Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)

\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)

\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)

Bài gì mà dễ sợ :(

14 tháng 12 2020

undefined

12 tháng 3 2018

Đáp án B

Ta có cvuFiueObB96.png

suy ra Jp6s51MEDzMi.png.

Ta có: 1fw3u7Xmf7Xb.png.

Bảng biến thiên của hàm số 1tXfb9HHgTOr.png như sau:

Description: 26

Dựa vào bảng biến thiên suy ra phương trình cxff6douOydG.png có bốn nghiệm phân biệt MHSp1hynivT5.png khi và chỉ khi cvyA3Qp08geJ.png.

25 tháng 3 2019

Chọn B

17 tháng 11 2018

Đáp án D

PT hoành độ giao điểm là: 

25 tháng 2 2017

Hàng nghìn: Có 3 cách chọn

Hàng trăm: Có 3 cách chọn

Hàng chục: Có 2 cách chọn

Hàng đơn vị: Có 1 cách chọn

Số các số có 4 chữ số khác nhau lập được từ 4 số trên là:

3 x 3 x 2 x 1 = 18 ( số )

Đáp số: 18 số

25 tháng 2 2017

d/s 18 so