K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

- Ta có : \(x^2-\left(m-2\right)x-3=0\)

- Ta thấy : \(ac=1\left(-3\right)=-3< 0\)

=> Nên phương trình có hai nghiệm phân biệt .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-3\end{matrix}\right.\)

- Ta có : \(\sqrt{x^2_1+2020}-x_1=\sqrt{x^2_2+2020}+x_2\)

=> \(\sqrt{x^2_1+2020}-\sqrt{x^2_2+2020}=x_1+x_2\)

=> \(x^2_1+2020+x_2^2+2020-2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}=x^2_1+x^2_2+2x_1x_2\)

=> \(4046=2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}\)

=> \(4092529=\left(x^2_1+2020\right)\left(x^2_2+2020\right)\)

=> \(x^2_1x^2_2+2020x_1^2+2020x^2_2+4080400=4092528\)

=> \(2020x_1^2+2020x^2_2=12120\)

=> \(x^2_1+x^2_2=6\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

=> \(m^2-4m+4-2\left(-3\right)=6\)

=> \(m^2-4m+4=0\)

=> \(m=2\)

Vậy ....

NV
19 tháng 7 2020

\(x_1x_2=-3< 0\Rightarrow\)pt đã cho có 2 nghiệm trái dấu

\(\Leftrightarrow\sqrt{x_1^2+2020}-x_2=x_1+\sqrt{x_2^2+2020}\)

\(\Rightarrow x_1^2+2020+x_2^2-2x_2\sqrt{x_1^2+2020}=x_1^2+x_2^2+2020+2x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow-x_2\sqrt{x_1^2+2020}=x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow x_2^2\left(x_1^2+2020\right)=x_1^2\left(x_2^2+2020\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\)

\(\Rightarrow x_1+x_2=0\Rightarrow m-2=0\Rightarrow m=2\)

Có thể thế vào tìm nghiệm và thay vào điều kiện đề bài để thử cho chặt chẽ hơn (do các bước biến đổi ko tương đương)

30 tháng 6 2021

\(x^2-\left(m+2\right)x+m+1=0\)

 \(\Delta=m^2\ge0\)

Suy ra pt luôn có hai nghiệm với mọi m

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{m+2-m}{2}=1\\x=\dfrac{m+2+m}{2}=m+1\end{matrix}\right.\)

TH1: \(x_1=1;x_2=m+1\)

Có \(x_1^3=x_2\Leftrightarrow1=m+1\)\(\Leftrightarrow m=0\)

TH2:\(x_1=m+1;x_2=1\)

Có \(x_1^3=x_2\)\(\Leftrightarrow\left(m+1\right)^3=1\)\(\Leftrightarrow m=0\)

Vậy m=0

6 tháng 4 2023

\(2x^2-4x-m=0\left(1\right)\)

a, Để pt (1) có hai nghiệm phân biệt thì Δ' > 0

\(\Rightarrow2+2m>0\Leftrightarrow m>-1\)

b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

Vì \(t_1,t_2\) là hai nghiệm của Phương trình \(x^2-Sx+P=0\) nên theo viét đảo có :

\(\left\{{}\begin{matrix}S=t_1+t_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\P=t_1.t_2=\dfrac{1}{x_1x_2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{x_1+x_2}{x_1x_2}\\P=\dfrac{1}{x_1x_2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{2}{-\dfrac{m}{2}}\\P=\dfrac{1}{-\dfrac{m}{2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=-\dfrac{4}{m}\\P=-\dfrac{2}{m}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình cần tìm là : \(x^2+\dfrac{4}{m}.x-\dfrac{2}{m}=0\) hay \(x^2m+4x-2=0\)

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3

 

 

 

17 tháng 12 2021

a: Thay m=-3 vào (1), ta được:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

hay x∈{3;-1}

8 tháng 5 2022

`a)` Ptr có:`\Delta=b^2-4ac=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2 >= 0 AA m`

  `=>` Ptr luôn có nghiệm với mọi `m`

`b)` Áp dụng Vi-ét. Ta có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-1):}`

Ta có:`x_1+x_2=2x_1.x_2`

 `<=>m=2(m-1)`

 `<=>m=2m-2`

 `<=>m=2` 

 

1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)

=1+4m-4

=4m-3

Để phương trình có nghiệm kép thì 4m-3=0

hay m=3/4

Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)

hay x=1/2

2: Để phương trình có hai nghiệm thì 4m-3>=0

hay m>=3/4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+1\)

=>1-m=-12

hay m=13

a: Thay m=3 vào pt, ta được:

\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thay x=-2 vào pt, ta được:

\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)

\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)

\(\Leftrightarrow m^2-2m+4+4m-4=0\)

=>m(m+2)=0

=>m=0 hoặc m=-2

Theo hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)

c: \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)

\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)

\(\Leftrightarrow2m^2-4m=0\)

=>2m(m-2)=0

=>m=0 hoặc m=2

5 tháng 2 2022

em cảm ơn ạ