K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 4 2022

Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(P\right)\) là: 

\(x^2=2mx+3\Leftrightarrow x^2-2mx-3=0\) (1) 

Phương trình (1) có hệ số \(a.c=1.\left(-3\right)=-3< 0\) nên (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo hệ thức Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-3\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+3\left|x_2\right|=6\)

Ta có hệ: 

\(\left\{{}\begin{matrix}x_1x_2=-3\\\left|x_1\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\\left|\dfrac{3}{x_2}\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\x_2^2-2\left|x_2\right|+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2=-1,x_1=3\\x_2=1,x_1=-3\end{matrix}\right.\)

Với \(x_1=3,x_2=-1\Rightarrow x_1+x_2=2\Rightarrow m=1\).

Với \(x_1=-3,x_2=1\Rightarrow x_1+x_2=-2\Rightarrow m=-1\)

 

 

23 tháng 4 2022

Phương trình hoành độ giao điểm của (d) và (P) là: 

x2=2mx+3⇔x2−2mx−3=0 (1) 

Phương trình (1) có hệ số a.c=1.(−3)=−3<0 nên (1) luôn có hai nghiệm phân biệt x1,x2.

Theo hệ thức Viete ta có: 

{x1+x2=2mx1x2=−3

Ta có: |x1|+3|x2|=6

Ta có hệ: 

{x1x2=−3|x1|+3|x2|=6⇔{x1=−3x2|3x2|+3|x2|=6⇔{x1=−3x2x22−2|x2|+1=0

⇔[x2=−1,x1=3x2=1,x1=−3

Với x1=3,x2=−1⇒x1+x2=2⇒m=1.

Với x1=−3,x2=1⇒x1+x2=−2⇒m=−1

 

PTHĐGĐ là:

x^2+2mx+4m=0

Δ=(2m)^2-4*4m=4m^2-16m

Để (P) cắt (d)tại 2 điểm phân biệt thì 4m^2-16m>0

=>m>4 hoặc m<0

|x1|+|x2|=3

=>x1^2+x2^2+2|x1x2|=3

=>(x1+x2)^2-2x1x2+2|x1x2|=3

=>(-2m)^2-2*4m+2|4m|=3

=>4m^2-8m+8|m|=3

TH1: m>4

=>4m^2-8m+8m=3

=>4m^2=3

=>m^2=3/4

=>Loại

TH2: m<0

=>4m^2-8m-8m-3=0

=>4m^2-16m-3=0

=>\(m=\dfrac{4-\sqrt{19}}{2}\)

21 tháng 7 2019

Hỏi đáp Toán

10 tháng 6 2021

a) (d) đi qua \(A\left(1;5\right)\Rightarrow5=2m+2m-3\Rightarrow4m=8\Rightarrow m=2\)

\(\Rightarrow y=4x+1\)

b) pt hoành độ giao điểm \(x^2-2mx-2m+3=0\)

Để (d) tiếp xúc với (P) thì pt có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m\right)^2+8m-12=4m^2+8m-12\)

\(\Rightarrow4m^2+8m-12=0\Rightarrow m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

7 tháng 6 2017

Đáp án B

21 tháng 5 2021

a) Xét phương trình hoành độ giao điểm (d) và (P)

           \(x^2 = 2(m+1)x - 4\)

     \(<=> x^2 -2(m+1) + 4 = 0\) (1)

có \(\Delta' = [-(m+1)]^2 -4\)

\(\Delta' = (m+1)^2- 4\)

(d) và (P) cắt nhau tại hai điểm phân biệt

<=> Phương trình (1) có hai nghiệm phân biệt

<=> \(\Delta' \)> 0

<=> \((m + 1)^2 - 4 >0\)

<=> \((m+1)^2 >4\)

<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)

\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)

b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)

nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x= 2(m+1)

                                        x1x= 4

Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x\(\geq \) 0)

=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)

<=> x1 - 2x1x2 + x2 = 4

<=> (x+ x2) - 2x1x2=4

<=> 2(m+1) - 2.4 = 4

<=> 2m + 2 - 8 = 4

<=> 2m = 10

<=> m = 5 (T/m)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Đoạn \((\sqrt{x_1}-\sqrt{x_2})^2=4\)

\(\Rightarrow x_1-2\sqrt{x_1x_2}+x_2=4\) chứ bạn.

a: khi m=2 thì (d): y=4x-2^2+1=4x-3

PTHĐGĐ:

x^2-4x+3=0

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

b: PTHĐGĐ là;

x^2-2mx+m^2-1=0

Δ=(-2m)^2-4(m^2-1)=4>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

2y1+4m*x2-2m^2-3<0

=>2(2mx1-m^2+1)+4m*x2-2m^2-3<0

=>4m*x1-2m^2+2+4m*x2-2m^2-3<0

=>-4m^2+4m*(x1+x2)-1<0

=>-4m^2+4m*(2m)-1<0

=>-4m^2+8m-1<0

=>\(\left[{}\begin{matrix}m< \dfrac{2-\sqrt{3}}{2}\\m>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

13 tháng 12 2017

Đáp án C