K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

Để pt có 2 nghiệm thì

Δ=25−4m>0

⇔m<254

Theo định lý viet ta có

{x1+x2=5x1x2=m

Ta có: |x1−x2|=3

⇔x12−2x1x2+x22=9

⇔(x1+x2)2−4x1x2=9

⇔52−4m=9

19 tháng 5 2023

m=2

23 tháng 7 2021

còn cái nịt

NV
3 tháng 3 2022

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

a: Thay m=2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

b: Thay x=2 vào pt, ta được:

\(4-2m+m-1=0\)

=>3-m=0

hay m=3

=>Phương trình sẽ là \(x^2-3x+2=0\)

hay \(x_2=1\)

c: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)

\(=m^2-4m+4=\left(m-2\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=2\)

\(\Leftrightarrow m^2-2m+2-2=0\)

\(\Leftrightarrow m\left(m-2\right)=0\)

=>m=0 hoặc m=2

10 tháng 3 2021

Ta có: \(\Delta\) = m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{m-\left(m-2\right)}{2}=1\); x2 = \(\dfrac{m+m-2}{2}=m-1\)

Ta có: |x1| + |x2| = 4

\(\Leftrightarrow\) 1 + |m - 1| = 4

\(\Leftrightarrow\) |m - 1| = 3

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

Để pt có 2 nghiệm thì: 

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)

Để $x_1< 0< x_2$

$\Leftrightarrow x_1x_2< 0$

$\Leftrightarrow \frac{m+5}{m}< 0$

$\Leftrightarrow -5< m< 0(2)$

$x_1< x_2< 2$

\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)

Từ $(1);(2);(3)$ suy ra $-5< m< -1$

 

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>(m+1)^2-2m>0`

`<=>m^2+2m+1-2m>0`

`<=>m^2+1>0` luôn đúng.

`a,\sqrt{\Delta}=\sqrt{m^2+1}`

`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`

`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`

`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`

`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta>0`

`<=>4(m+1)^2-8m>0`

`<=>4m^2+8m+4-8m>0`

`<=>4m^2+4>0` luôn đúng.

`a,\sqrt{\Delta}=2\sqrt{m^2+1}`

`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`

`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`

`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`

`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

23 tháng 6 2021

`a)ac=-2<0`

`=>Delta=b^2-4ac>0`

`=>` pt có 2 nghiệm pb `AAm`

b)ÁP dụng vi-ét ta có:`x_1+x_2=-m,x_1.x_2=-2`

`pt<=>(x_1+x_2)^2-x_1.x_2=6`

`<=>m^2+2=6`

`<=>m^2=4`

`<=>m=+-2`

23 tháng 6 2021

1a) Ta có: \(ac=-2.1=-2< 0\) \(\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu với mọi m

b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2+x_1x_2=6\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=6\)

\(\Rightarrow m^2+2=6\Rightarrow m^2=4\Rightarrow m=\pm2\)