Tìm đa thức bậc ba P(x) , biết P(x) chia cho x-1 ; x-2 ; x-3 đều dư 6 và P(-1)= -18.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(f\left(x\right)=ax^3+bx^2+cx+d\)
f(x) chia hết cho 2x-1 và khi chia cho các đa thức x-1,x+1, x-2 đều có số dư là 7.
Áp đụng định lý bezout ta có hệ:
\(\left\{\begin{matrix}0,5^3a+0,5^2b+0,5c+d=0\\a+b+c+d=7\\-a+b-c+d=7\\8a+4b+2c+d=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{56}{9}\\b=\frac{112}{9}\\c=\frac{56}{9}\\d=-\frac{49}{9}\end{matrix}\right.\)
vậy\(f\left(x\right)=-\frac{56}{9}x^3+\frac{112}{9}x^2+\frac{56}{9}x-\frac{49}{9}\)
p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong
Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )
F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6
=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
Đến đây ta áp dụng định lí Bézoute :
F(x) - 6 chia hết cho x - 1 <=> F(1) = 0
<=> a + b + c + d - 6 = 0
<=> a + b + c + d = 6 (1)
F(x) - 6 chia hết cho x - 2 <=> F(2) = 0
<=> 8a + 4b + 2c + d - 6 = 0
<=> 8a + 4b + 2c + d = 6 (2)
F(x) - 6 chia hết cho x - 3 <=> F(3) = 0
<=> 27a + 9b + 3c + d - 6 = 0
<=> 27a + 9b + 3c + d = 6 (3)
F(-1) = -18
<=> -a + b - c + d = -18 (4)
Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)
< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >
Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0
=> F(x) = x3 - 6x2 + 11x