Bài 2
Cho P = √x/√x+1 + 2√2/√x+1 - 3x+1/x+1 ; x≥0,x≠1
a) Rút gọn P
b) Tính P khi x = 1
c) Tính P khi x = 4 - 2√3
d) Tìm x , khi P = 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i: \(=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)
Bài 1:
\(i,\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}-\dfrac{x+2}{5-x}=\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)
\(j,\dfrac{3x\left(x-2\right)}{3x-2}+\dfrac{6x^2}{3x-2}-\dfrac{2\left(2-3x\right)}{2-3x}=\dfrac{3x^2-6x}{3x-2}+\dfrac{6x^2}{3x-2}+\dfrac{4-6x}{3x-2}=\dfrac{3x^2-6x+6x^2+4-6x}{3x-2}=\dfrac{9x^2-12x+4}{3x-2}=\dfrac{\left(3x-2\right)^2}{3x-2}=3x-2\)
\(n,\dfrac{2}{x}+\dfrac{3}{x-1}+\dfrac{1-4x}{x^2-x}=\dfrac{2\left(x-1\right)+3x+1-4x}{x\left(x-1\right)}=\dfrac{2x-2+3x+1-4x}{x\left(x-1\right)}=\dfrac{x-1}{x\left(x-1\right)}=\dfrac{1}{x}\)
Bài 2:
\(j,\dfrac{2}{3x}-\dfrac{1}{2x-2}-\dfrac{x-4}{6x-6x^2}=\dfrac{4\left(x-1\right)}{6x\left(x-1\right)}-\dfrac{3x}{6x\left(x-1\right)}-\dfrac{x-4}{6x\left(1-x\right)}=\dfrac{4x-4-3x+x-4}{6x\left(x-1\right)}=\dfrac{2x-8}{6x\left(x-1\right)}=\dfrac{2\left(x-4\right)}{6x\left(x-1\right)}=\dfrac{x-4}{3x\left(x-1\right)}\)
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)
Bài 1:
a: ĐKXĐ: \(x\notin\left\{0;-1;\dfrac{1}{2}\right\}\)
\(P=\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right):\dfrac{1-x}{2x}\)
\(=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{-\left(x-1\right)}\)
\(=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{-2x}{x-1}\)
\(=\left(-1\right)\cdot\dfrac{-2x}{x-1}=\dfrac{2x}{x-1}\)
b: Để P nguyên thì \(2x⋮x-1\)
=>\(2x-2+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{2;3\right\}\)
c: P<1
=>P-1<0
=>\(\dfrac{2x}{x-1}-1< 0\)
=>\(\dfrac{2x-x+1}{x-1}< 0\)
=>\(\dfrac{x+1}{x-1}< 0\)
=>-1<x<1
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-1< x< 1\\x\ne0\end{matrix}\right.\)
a) x(x + 1) - 2x(x - 2) = x2 + x - 2x2 + 4x = -x2 + 5x
b) -3x(x - 1) + (x - 1)(x + 1) = -3x2 + 3x + x2 - 1 = -2x2 + 3x - 1
c) (3x - 2)(3x + 2) - (x - 1)(x + 2) = 9x2 - 4 - x2 - x + 2
= 8x2 - x - 2
a, x(x+1) - 2x(x -2 )
= x2 +x - 2x2 + 4x = -x2 + 5x
b, -3x( x - 1 ) + ( x -1 ) ( x+1 )
= -3x2 + 3x + x2 -1
= -2x2 + 3x -1
c, ( 3x-2 ) ( 3x + 2 ) - ( x -1 ) ( x +2 )
= 9x2 - 4 - ( x2 + 2x -x -2 )
= 9x2 -4 - x2 -2x + x + 2
= 8x2 -x -2
*Sxl
(3x-2)(4x-3-2x+2)-(2-3x)(x-1)
(3x-2)(2x-1)-(3x-2)(1-x)
(3x-2)(2x-1-1+x)
(3x-2)(3x-2)
tớ làm ko đúng thì chỉ cho nhé
Bài 1 :
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
Vì \(100< 104\Rightarrow A< B\)
Bài 2 :
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Rightarrow4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)
\(\Rightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Rightarrow4x=-2\)\(\Leftrightarrow x=-\frac{1}{2}\)