K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AHK\)\(DHB\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHK}=\widehat{DHB}\) (vì 2 góc đối đỉnh)

\(HK=HB\left(gt\right)\)

=> \(\Delta AHK=\Delta DHB\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AHK=\Delta DHB.\)

=> \(\widehat{AKH}=\widehat{DBH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AK\) // \(BD.\)

c) Ta có: \(\widehat{AHB}+\widehat{DHB}=180^0\) (vì 2 góc kề bù).

=> \(90^0+\widehat{DHB}=180^0\)

=> \(\widehat{DHB}=180^0-90^0\)

=> \(\widehat{DHB}=90^0.\)

Xét 2 \(\Delta\) vuông \(ABH\)\(DBH\) có:

\(\widehat{AHB}=\widehat{DHB}=90^0\left(cmt\right)\)

\(AH=DH\left(gt\right)\)

Cạnh BH chung

=> \(\Delta ABH=\Delta DBH\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(AB=BD\) (2 cạnh tương ứng).

d) Xét 2 \(\Delta\) \(ABH\)\(DKH\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHB}=\widehat{DHK}\) (vì 2 góc đối đỉnh)

\(BH=KH\left(gt\right)\)

=> \(\Delta ABH=\Delta DKH\left(c-g-c\right)\)

=> \(\widehat{ABH}=\widehat{DKH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(DK.\)

Lại có: \(AB\perp AC\) (vì \(\Delta ABC\) vuông tại A).

=> \(DK\perp AC.\)

\(KI\perp AC\left(gt\right)\)

=> \(DK\)\(KI\) trùng nhau.

=> 3 điểm \(D,K,I\) thẳng hàng (đpcm).

Chúc bạn học tốt!

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

a: Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AB=AD

AC chung

Do đó: ΔABC=ΔADC

b: Xét tứ giác BCDE có 

A là trung điểm của BD

A là trung điểm của CE

Do đó: BCDE là hình bình hành

Suy ra: BC//DE

a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đó: ΔABC=ΔADC

c: Ta có: ΔABC=ΔADC

nên BC=DC

hay ΔCBD cân tại C

a: Xét ΔABD và ΔACD có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

b: Đề sai rồi bạn

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

24 tháng 3 2021

Anh bổ sung là : AH vuông góc với BC nhé 

\(BC=HB+HC=2+8=10\left(cm\right)\)

\(\text{Áp dụng định lý Pytago trong tam giác ABC vuông tại A:}\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

Bổ sung đề \(AH\) là đường cao.

Áp dụng hệ thức lượng vào tam giác vuông \(ABC\) và đường cao \(AH\) ta có :

\(AB^2=BC.BH\)

\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{\left(8+2\right).2}=\sqrt{20}=2\sqrt{5}\)\((cm)\)

21 tháng 7 2017

Chọn A.

24 tháng 3 2021

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

a. Áp dụng HTL trong tam giác vuông ta có:

$AE.AB=AH^2$
$AF.AC=AH^2$

$\Rightarrow AE.AB=AF.AC\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}$

Xét tam giác $AFE$ và $ABC$ có:

$\widehat{EAF}=\widehat{CAB}=90^0$

$\frac{AE}{AF}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AFE\sim \triangle ABC$ (c.g.c)

b.

Áp dụng HTL trong tam giác vuông:

$BE.BA=BH^2$

$CF.CA=CH^2$

$\Rightarrow BE.CF.AB.AC=(BH.CH)^2=(AH^2)^2$

$\Leftrightarrow BE.CF.2S_{ABC}=AH^4$

$\Leftrightarrow BE.CF.AH.BC=AH^4$

$\Leftrightarrow BE.CF.BC=AH^3$ (đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Hình vẽ: