Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC; trên tia đối của tia DC lấy điểm F sao cho CD = DF. Chứng minh rằng các đoạn thẳng AC , ED, và BF đồng quy.
mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BC=DA(BADC là hình bình hành)
\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)
\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)
Do đó: MB=MC=NA=ND
Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
b: Hình bình hành ABMN có BA=BM(=BC/2)
nên ABMN là hình thoi
c: Ta có: MB//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
mà \(\widehat{EAD}=60^0\)
nên \(\widehat{EBM}=60^0\)
Ta có: BA=BE
BA=BM(=BC/2)
Do đó: BE=BM
Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét tứ giác ANME có NM//AE(ABMN là hình thoi)
nên ANME là hình thang
Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)
nên ANME là hình thang cân
=>AM=NE
Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath
a: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
Vì ABCD là hình bình hành nên nên AB = DC cà AB // DC hay AB = BE và AB // BE
=> Tg AEBD là hình bình hành => AE // BD => \(\widehat{EAB}=\widehat{ABD}\)(SLT)
CM tương tự ta cũng có tg ABDE là hình bình hành => AF // BD => \(\widehat{FAD}=\widehat{ADB}\)(SLT)
Tam giác \(ADB\) có \(\widehat{ADB}+\widehat{ABD}+\widehat{BAD}=180^0\)(DL tổng 3 góc của 1 tam giác)
Mà \(\widehat{EAB}=\widehat{ABD}\); \(\widehat{FAD}=\widehat{ADB}\) (cmt) nên \(\widehat{EAB}+\widehat{FAD}+\widehat{BAD}=180^0\)
Hay F;A;E thẳng hàng
Vì tứ giác AEBD là hình BH nên AE = BD ; tứ giác FABD là hình BH nên AF = BH
Từ 2 điều trên suy ra AE = AF hay A là trung điểm của FE => CA là đường trung tuyến của tam giác ECF
Xét tam giác ECF có ED ; FB ; CA là các đường trung tuyến nên theo TC thì ED ; FB ; CA đồng quy (đpcm)