cho tam giac co diem M la trung diem cua BC. Keo dai AM
lay MD =MA
1 CM tam giac ABM =tam giac DCM; tam giac ACM=tam giac DBM
roi viet cac cap canh va cap goc tuong ung bang nhau
2, so sanh tam giac ABD va DAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Tự vẽ hình nhé!)
a) Xét \(\Delta ABM\)và \(\Delta DCM\)có:
\(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)
\(BM=CM\left(gt\right)\)
\(AM=DM\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b) Ta có: M là trung điểm BC
M là trung điểm AD
\(\Rightarrow\)Tứ giác ABCD là hình bình hành
\(\Rightarrow AB\)// \(CD\)
c) Xét \(\Delta ABC\)có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow AM\)vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AM⊥BC\)
d) Câu này chưa hiểu => chưa giải
Xet tam giac ABM va tam giac DCM
BM=MC(gt)
AM=MD(gt)
BMA=DMC( 2 goc doi dinh)
=> tam gica ABM=tam giac DCM
b)tam giac BMD=tam giac CMA (c.g.c)
=> A= D( 2 goc tg ung)
ma 2 goc nay o vi tri SLT
=>BD//AC
tick mk nha cau c doi ti nua nho nhe
A B C M D
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CDA B C D M F E
a) Xét hai tam giác ABM và DCM có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
b) Vì \(\Delta ABM=\Delta DCM\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AB // DC
c) Xét hai tam giác vuông BEM và CFM có:
MB = MC (gt)
\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)
\(\Rightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)
\(\Rightarrow\) EM = FM
Hay M là trung điểm của EF.
A B C M x N O a H
a, kẻ NO // AB
=> góc MAN = góc ONC (đv) (1)
góc ABO = góc NOC (đv) (2)
NO // AB (vc) => NOAB là hình thang
Mx // BC (gt)
=> MN = BO (tc)
MB = NO (tc) (3)
(1)(2)(3) => tam giác AMN = tam giác NOC (g-c-g)
=> AN = NC (đn) mà N nằm giữa A và C
=> N là trung điểm của AC (đn)
b, M là trd của AB (gt)
N là trd của AC (Câu a)
=> MN là đường trung bình của tam giác ABC (đn)
=> MN = 1/2BC (Đl)
mà BC = a
=> MN = a/2
1: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Xét ΔACM và ΔDBM có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔACM=ΔDBM
2: Xét ΔABD và ΔDCA có
AB=DC
BD=CA
AD chung
Do đó: ΔABD=ΔDCA