K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 thiếu đề sao làm được

20 tháng 7 2018

mk chịu 

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2

`@` `\text {Ans}`

`\downarrow`

`a)`

`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)

`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`

`= x^2 - 8x + 23`

Hệ số cao nhất: `1`

Hệ số tự do: `23`

`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)

`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`

`= -x - 9`

Hệ số cao nhất: `-1`

Hệ số tự do: `-9`

`b)`

`N(x) - B(x) = A(x)`

`=> N(x) = A(x) + B(x)`

`=> N(x) = (x^2 - 8x + 23)+(-x-9)`

`= x^2 - 8x + 23 - x - 9`

`= x^2 - 9x + 14`

 

`A(x) - M(x) = B(x)`

`=> M(x) = A(x) - B(x)`

`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`

`= x^2 - 8x + 23 + x+9`

`= x^2 - 7x +32`

14 tháng 8 2023

a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17

           = 3x^2 + 6 - 12x - 2x^2 + 4x + 17

           = x^2 - 2x + 23

b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)

           = 3x^2 - 7x + 3 - 3x^2 + 6x - 12

           = -x + -9

A(x) = x^2 - 2x + 23

B(x) = -x - 9

Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.

Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.

b)

N(x) - B(x) = A(x)

N(x) - (-x - 9) = x^2 - 2x + 23

N(x) + x + 9 = x^2 - 2x + 23

N(x) = x^2 - 3x + 14

Vậy, N(x) = x^2 - 3x + 14.

A(x) - M(x) = B(x)

x^2 - 2x + 23 - M(x) = -x - 9

x^2 - 2x + x + 9 + 23 = M(x)

x^2 - x + 32 = M(x)

Vậy, M(x) = x^2 - x + 32.

 

18 tháng 5 2022

a. M(x) + N(x) = 6x– 2x2 + 3x +10 - 6x3 + x2 – 6x -10

= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )

= -x2 - 3x 

M(x) - N(x) = 6x– 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)

= 6x– 2x2 + 3x +10 + 6x3 - x2 + 6x +10

= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)

= 12x3 - 3x2 + 9x + 20

b. Đặt -x2 - 3x  = 0

=> -x2 + (-3)x = 0

=> -x2 + 3.-x = 0

=> -x(-x+ 3) = 0

=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy nghiệm của đa thức trên là 0 hoặc -3

a) M(X) + N(x)= (6x– 2x2 + 3x +10)

+ (–6x3 + x2 – 6x -10)

M(x) + N(x)=  – x2 - 3x.

M(x) + N(x)= (6x– 2x2 + 3x +10)

- (–6x3 + x2 – 6x -10)

M(x) - N(x)= 12x3 - x2 + 9x + 20.

b) Nghiệm của M(x) + N(x)= x= 0, -3.

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

16 tháng 5 2022

đây là thu gọn à bn

 

AH
Akai Haruma
Giáo viên
11 tháng 5 2021

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)

11 tháng 5 2022

\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)

\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)

\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)

\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)

a: \(P\left(x\right)=4x^3+x^2-2x+7\)

\(Q\left(x\right)=-4x^3-x^2+4x-3\)

b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)

\(N\left(x\right)=8x^3+2x^2-6x+10\)

c: Đặt M(x)=0

=>2x+4=0

hay x=-2