cho n điểm phân biệt(n thuộc N*; n < hoặc = 2) trong đó không có 3 điểm nào thẳng hàng , kể các đường thẳng đi qua các cặp điểm . hỏi có bao nhiêu đường thẳng phân biệt?
giúp mih nha ! mih cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có qua 2 điểm ta vẽ được 1 đường thẳng
3điểm ta vẽ được 2đương thẳng
n điểm ta vẽ được n(n-1):2 đường thẳng
Gọi n điểm đã cho là: \(A_1;A_2;A_3;...;A_n\); n\(\ge\)2.
Vì không có 3 điểm nào thẳng hàng nên :
+) Nối \(A_1\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
+) Nối \(A_2\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
+) Nối \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
...
+) Nối \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
Như chúng ta có: n ( n - 1) đường thẳng
Tuy nhiên mỗi đường thẳng được tính 2 lần ( VD như nối \(A_1\)với \(A_2\)ta có đường thẳng \(A_1\)\(A_2\); còn nối \(A_2\)với \(A_1\)ta có đường thẳng \(A_2\)\(A_1\); và 2 đường thẳng \(A_1\)\(A_2\); \(A_2\)\(A_1\) trùng nhau )
=> Do đó số đường thẳng phân biệt là: n ( n - 1) : 2.
Sửa đề: Ko trùng với các điểm A,B
Theo đề, ta có: \(C^2_{n+2}=120\)
=>\(\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=120\)
=>(n+2)(n+1)=240
=>n+1=15
=>n=14
Câu hỏi của Hà Nhật Anh - Toán lớp 6 - Học toán với OnlineMath