Cho log 2 5 = a ; log 5 3 = b . Tính log 24 15 theo a và b
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)
\(=4\log_32+\log_35=4a+b\)
\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)
\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)
\(=-a+1+2b\)
Bài 2:
\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)
\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)
\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)
\(log_65=\dfrac{1}{log_56}=\dfrac{1}{log_52+log_53}=\dfrac{1}{a+b}\)
=>Chọn B
\(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}=\dfrac{a^2\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{4}{5}}}{a^{\dfrac{1}{4}}}=\dfrac{a^{\dfrac{47}{15}}}{a^{\dfrac{1}{4}}}=a^{\dfrac{173}{60}}\)
\(\Rightarrow log_a\left(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}\right)=log_a\left(a^{\dfrac{173}{60}}\right)=\dfrac{173}{60}\)
\(a^{2log_a\left(\dfrac{\sqrt{105}}{30}\right)}=a^{log_a\left(\dfrac{7}{60}\right)}=\dfrac{7}{60}\)
Vậy \(B=\dfrac{173}{60}+\dfrac{7}{60}=\dfrac{180}{60}=3\)
a,Ta có: \(a^6=\left(a^{\dfrac{3}{5}}\right)^{10}=b^{10}\\ a^3b=\left(a^{\dfrac{3}{5}}\right)^5\cdot b=b^5\cdot b=b^6\\ \dfrac{a^9}{b^9}=\dfrac{\left(a^{\dfrac{3}{5}}\right)^{15}}{b^9}=\dfrac{b^{15}}{b^9}=b^6\)
b, \(log_ab=log_aa^{\dfrac{3}{5}}=\dfrac{3}{5}\\ log_a\left(a^2b^5\right)=log_a\left(a^2\cdot a^3\right)=log_a\left(a^5\right)=5\\ log_{\sqrt[5]{a}}\left(\dfrac{a}{b}\right)=5log_a\left(\dfrac{a}{a^{\dfrac{3}{5}}}\right)=5log_a\left(a^{\dfrac{2}{5}}\right)=2\)
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
Chọn A