Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính diện tích tam giác ABC, chúng ta có thể sử dụng công thức diện tích tam giác:
Diện tích tam giác ABC = 1/2 * AB * AC * sin(A)
Với góc A = 50°50' và AB = 4cm, AC = 6cm, chúng ta có thể tính được diện tích tam giác ABC bằng cách thay các giá trị vào công thức trên.
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot6\cdot sin50\simeq9,19\left(cm^2\right)\)
a: góc C=180-110-40=30 độ
Xét ΔABC có AB/sinC=BC/sinA=AC/sinB
=>AB/sinC=BC/sinA
=>AB/sin30=12/sin110
=>\(AB\simeq6,39\left(cm\right)\)
b: BC/sinA=AC/sinB
=>AC/sin40=12/sin110
=>\(AC\simeq8,21\left(cm\right)\)
\(AB=AC=\dfrac{BC}{\sqrt{2}}=\dfrac{3a}{\sqrt{2}}\)
\(\Rightarrow V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.2a.\dfrac{1}{2}.\left(\dfrac{3a}{\sqrt{2}}\right)^2=\dfrac{3a^3}{2}\)
Ta có: ΔBDM ~ ΔCME (cmt)
=> D M M E = B D C M = B D B M (do CM = BM (gt))
⇒ B D D M = B M M E
Xét ΔBDM và ΔMDE ta có:
D M E ^ = A B C ^ (gt)
=> ΔBDM ~ ΔMDE (c - g - c)
B D M ^ = M D E ^ (hai góc tương ứng)
Đáp án: B