K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Sửa lại đề Ax // Cy

60 A B C y x z z'

Vẽ zz' đi qua B và zz' // Ax

Vì Ax // Cy

\(\Rightarrow zz'\) // Cy

+) Vì Ax // zz'

\(\widehat{xAB}\)\(\widehat{ABz}\) là 2 góc so le trong

\(\Rightarrow\widehat{xAB}=\widehat{ABz}\)

\(\widehat{xAB}=60^0\)

\(\Rightarrow\widehat{ABz}=60^0\)

+) Ta có:

\(\widehat{ABz}+\widehat{zBC}=\widehat{ABC}\)

\(\Rightarrow\widehat{zBC}=\widehat{ABC}-\widehat{ABz}\)

\(\Rightarrow\widehat{zBC}=90^0-60^0=30^0\)

+) Vì zz' // Cy

\(\widehat{zBC}\)\(\widehat{BCy}\) là 2 góc so le trong

\(\Rightarrow\widehat{zBC}=\widehat{BCy}\)

\(\widehat{zBC}=30^0\)

\(\Rightarrow\widehat{BCy}=30^0\)

Vậy \(\widehat{BCy}=30^0\)

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

b: Xét tứ giác AMCI có 

AI//MC

AM//CI

Do đó: AMCI là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCI là hình chữ nhật

hay AC=MI

c: Ta có: AICM là hình chữ nhật

nên AI=MC

mà MB=MC

nên AI=MB

Xét tứ giác AIMB có 

AI//MB

AI=MB

Do đó: AIMB là hình bình hành

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

b: Xét tứ giác AMCI có

AM//CI

AI//MC

Do đó: AMCI là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCI là hình chữ nhật

Suy ra: AC=MI

c: Ta có: AMCI là hình chữ nhật

nên AI=MC

mà MC=MB

nên AI=MB

Xét tứ giác ABMI có

AI//MB

AI=MB

Do đó: ABMI là hình bình hành

20 tháng 12 2022

Hình Tự Vẽ nhe

a)

Tam Giác ABC có:

E là trung điểm của AB (gt)

K là trung điểm của AC(gt)

=> EK là đường trung bình của tam giác ABC

=> EK//BC ( tính chất đường trung bình của tam giác )

b)

Tứ giác ABMC có:

BM//AC ( Bx//AC; M thuộc Bx)

CM//AB ( Cy//AB; M thuộc Cy )

Góc A = 90 độ (gt)

=> tứ giác ABMC là Hình chữ nhật

=> AB//MC (tính chất hình chữ nhật )

c)

Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

mà AB//MC(cmt) => MC//KO

Tam Giác ABC có:

K là trung điểm của AC (gt)

KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

=> KO là đường trung bình của tam giác ABC 

=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )

tam giác AMC có:

K là trung điểm của AC (gt)

KO//MC (cmt)

=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )

Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng

 

 

 

 

a: Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó:BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay H,M,D thẳng hàng