Cho hình vẽ :
Cho ac // cy ; góc A = 60 độ
góc ABC = 90 độ
TÍnh góc BCY
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Xét tứ giác AMCI có
AI//MC
AM//CI
Do đó: AMCI là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCI là hình chữ nhật
hay AC=MI
c: Ta có: AICM là hình chữ nhật
nên AI=MC
mà MB=MC
nên AI=MB
Xét tứ giác AIMB có
AI//MB
AI=MB
Do đó: AIMB là hình bình hành
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Xét tứ giác AMCI có
AM//CI
AI//MC
Do đó: AMCI là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCI là hình chữ nhật
Suy ra: AC=MI
c: Ta có: AMCI là hình chữ nhật
nên AI=MC
mà MC=MB
nên AI=MB
Xét tứ giác ABMI có
AI//MB
AI=MB
Do đó: ABMI là hình bình hành
Hình Tự Vẽ nhe
a)
Tam Giác ABC có:
E là trung điểm của AB (gt)
K là trung điểm của AC(gt)
=> EK là đường trung bình của tam giác ABC
=> EK//BC ( tính chất đường trung bình của tam giác )
b)
Tứ giác ABMC có:
BM//AC ( Bx//AC; M thuộc Bx)
CM//AB ( Cy//AB; M thuộc Cy )
Góc A = 90 độ (gt)
=> tứ giác ABMC là Hình chữ nhật
=> AB//MC (tính chất hình chữ nhật )
c)
Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )
mà AB//MC(cmt) => MC//KO
Tam Giác ABC có:
K là trung điểm của AC (gt)
KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )
=> KO là đường trung bình của tam giác ABC
=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )
tam giác AMC có:
K là trung điểm của AC (gt)
KO//MC (cmt)
=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )
Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó:BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H,M,D thẳng hàng
Sửa lại đề Ax // Cy
Vẽ zz' đi qua B và zz' // Ax
Vì Ax // Cy
\(\Rightarrow zz'\) // Cy
+) Vì Ax // zz'
mà \(\widehat{xAB}\) và \(\widehat{ABz}\) là 2 góc so le trong
\(\Rightarrow\widehat{xAB}=\widehat{ABz}\)
mà \(\widehat{xAB}=60^0\)
\(\Rightarrow\widehat{ABz}=60^0\)
+) Ta có:
\(\widehat{ABz}+\widehat{zBC}=\widehat{ABC}\)
\(\Rightarrow\widehat{zBC}=\widehat{ABC}-\widehat{ABz}\)
\(\Rightarrow\widehat{zBC}=90^0-60^0=30^0\)
+) Vì zz' // Cy
mà \(\widehat{zBC}\) và \(\widehat{BCy}\) là 2 góc so le trong
\(\Rightarrow\widehat{zBC}=\widehat{BCy}\)
mà \(\widehat{zBC}=30^0\)
\(\Rightarrow\widehat{BCy}=30^0\)
Vậy \(\widehat{BCy}=30^0\)