Cho 2 đa thức f (x) =ax b ; g(x) = x 2 - x 1 hãy xác định a,b biết :f(1)=g (2) và f (-2) = g(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a) Ta có: \(g\left(x\right)=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
Vì \(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)
\(\Leftrightarrow-1+a+b=0\)
\(\Leftrightarrow a+b=1\left(3\right)\)
Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)
\(\Leftrightarrow-4+2a+b=0\)
\(\Leftrightarrow2a+b=4\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)
Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)
Các phần sau tương tự
f(x)=(x−1)(x2−2x−2)f(x)=(x−1)(x2−2x−2) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên.
Do đó f(x) cho hết x2+ax+bx2+ax+b khi x2−2x−2x2−2x−2 chia hết x2+ax+b.x2+ax+b
⇒a=b=−2
\(f\left(x\right)=\left(x-1\right)\left(x^2-2x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên
Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)
\(\Rightarrow a=b=-2\)
Lời giải:
\(x^3-3x^2+2=x(x^2+ax+b)-(a+3)(x^2+ax+b)+(a^2+3a-b)x+b(a+3)+2\)
Để $f(x)$ chia hết cho $x^2+ax+b$ thì:
\(\left\{\begin{matrix} a^2+3a-b=0\\ b(a+3)+2=0\end{matrix}\right.\)
Với $a,b$ nguyên ta dễ dàng tìm được $a=b=-2$
Vì nghiệm của f(x) là 1 nên
Thay 1 vào đa thức f(x) ta được
\(f\left(1\right)=a+b+5=1\Leftrightarrow a+b=-4\)(1)
Vì nghiệm của f(x) là -2 nên
Thay -2 vào đa thức f(x) ta được
\(f\left(-2\right)=4a-2b+5=-2\Leftrightarrow4a-2b=-7\)(2)
Từ (1) và (2) ta có hệ sau : \(\left\{{}\begin{matrix}a+b=-4\\4a-2b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-4-b\left(1\right)\\4a-2b=-7\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2) ta được : \(4\left(-4-b\right)-2b=-7\Leftrightarrow-16-4b-2b=-7\Leftrightarrow-6b=9\Leftrightarrow b=-\dfrac{3}{2}\)
\(\Rightarrow a=-4+\dfrac{3}{2}=\dfrac{-5}{2}\)
Vậy a = -5/2 ; b = -3/2
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2