K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)

b. Thay số vào rồi tính là ra nhé bạn.

c. \(f\left(x\right)=\frac{1}{4}\)

\(\frac{x+2}{x-1}=\frac{1}{4}\)

4(x + 2) = x - 1

4x + 8 = x - 1

4x - x = -1 - 8

3x = -9

x = -3

d. \(f\left(x\right)\in Z\)

\(\Rightarrow\frac{x+2}{x-1}\in Z\)

\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)

\(\Rightarrow1+\frac{3}{x-1}\in Z\)

\(\Rightarrow\frac{3}{x-1}\in Z\)

Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)

Ta có bảng sau:

x - 1-1-313
x0-224

Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)

e. f(x) > 0

\(\Leftrightarrow\frac{x+2}{x-1}>0\)

\(\Rightarrow1+\frac{3}{x-1}>0\)

\(\Rightarrow\frac{3}{x-1}>-1\)

\(\Rightarrow x-1>-3\)

\(\Rightarrow x>-2\)

14 tháng 11 2018

a)  x khác 1

b) f(7)=\(\frac{3}{2}\)

c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3

d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)

f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}

         

x-1-113-3
x024-2

e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1

    
     
13 tháng 5 2022

$a)$ Để $VP$ có nghĩa thì $x-1\ne0 \Leftrightarrow x\ne1$ 

$b)$ Ta có $f(7)=\frac{9}{6}=\frac{3}{2}$

21 tháng 4 2016

a/ để vế phải có nghĩa thì x-1>0 nên x>1

21 tháng 4 2016

Dễ thế còn gì

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)

6 tháng 12 2016

f) Tìm x để F>0