K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

\(b^2=ac\) nên \(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) nên \(\dfrac{c}{d}=\dfrac{b}{c}\) (2)

Từ (1) và (2) suy ra:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\) \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{abc}{bcd}=\dfrac{a}{d}\) (3)

Áp dụng tính chất của dãy tỉ lệ thức bằng nhau, ta có:

\(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (4)

Từ (3) và (4) suy ra:

\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (đpcm)

25 tháng 11 2021

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

16 tháng 12 2024

Cc

Ta có: 

M=1/a^2+1/b^2+1/c^2 = (a^2b^2 + b^2c^2 + c^2a^2)/a^2b^2c^2 

Bình phương 2 vế a+b+c=0 
=> a^2+b^2+c^2 = -2(ab+bc+ca) 
=> (a^2 +b^2 +c^2)^2 =4 [a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)] 
=> (a^2 +b^2 +c^2)^2/4 = a^2b^2 + b^2c^2 + c^2a^2 

=> M = [(a^2 +b^2 +c^2)/2abc]^2 

Vì a,b,c là các số hữu tỷ 
=> M là bình phương của số hữu tỷ

20 tháng 11 2018

\(M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2-2b^2ac-2c^2ab-2a^2bc}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2}{a^2b^2c^2}=\left(\frac{ab+bc+ca}{abc}\right)^2\) là bình phương 1 số hửu tỉ.