K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

với x≥-1 ta có:

x+1+x+7=6-(x+2)²

⇔2x+8=6-x²-4x-4

⇔x²+6x+6=0

với x≤-7 ta có

 -x-1-x-7=6-(x+2)²

⇔-2x-8=6-x²-4x-4

⇒x²+2x-10=0

⇒x=-1±√11

với -7<x<-1 ta có 

-x-1+x+7=6-(x+2)²

⇔6=6-(x+2)²

⇒x=-2

7 tháng 10 2018

ta có: \(5x=8y\Rightarrow\frac{x}{8}=\frac{y}{5}\Rightarrow\frac{x}{32}=\frac{y}{20}\)

\(8y=20z\Rightarrow\frac{y}{20}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{32}=\frac{y}{20}=\frac{z}{8}\)

ADTCDTSBN

có: \(\frac{x}{32}=\frac{y}{20}=\frac{z}{8}=\frac{x-y-z}{32-20-8}=\frac{3}{4}\)

=> ...

bn tự tính típ nha

3 tháng 3 2019

\(\frac{x+4}{7+y}=\frac{4}{7}\Leftrightarrow\frac{x+4}{4}=\frac{y+7}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x+4}{4}=\frac{y+7}{7}=\frac{x+4+y+7}{4+7}=\frac{11+4+7}{4+7}=2\)

\(\Rightarrow\hept{\begin{cases}x+4=2.4=8\\y+7=2.7=14\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=7\end{cases}}}\)

3 tháng 3 2019

\(\frac{x+4}{7+y}=\frac{4}{7}\)

\(\Rightarrow\left(x+4\right)\cdot7=\left(7+y\right)\cdot4\)

\(\Rightarrow x7+28=y4+28\)

\(\Rightarrow x7=y4\)

\(x+y=11\Rightarrow x=11-y\)

\(\left(11-y\right)\cdot7=4y\)

\(\Rightarrow77-7y=4y\)

\(\Rightarrow77=11y\)

\(\Rightarrow y=7\)

\(x=11-7=4\)

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

18 tháng 11 2015

x + y + z = - 90

14 tháng 1 2018

+)Xét x+y+z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>x+y+z=1/2

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+2\\2z=x+y-3\end{cases}\Rightarrow\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}\Rightarrow}\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)

+)Xét x+y+z=0

=>x/y+z+1=y/x+z+2=z/x+y-3=0

=>x=y=z=0

16 tháng 8 2019

Vì |1/4 - x| ≥ 0; |x - y + z| ≥ 0; |2/3 + y| ≥ 0

=> |1/4 - x| + |x - y + z| + |2/3 + y| ≥ 0

Dấu " = " xảy ra <=>. \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\\frac{1}{4}-y-\frac{2}{3}=0\\y=\frac{-2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-5}{12}\\z=\frac{-2}{3}\end{cases}}\) 

Vậy ....