cho a b c biết a/2 = b/3; b/5=c/2 và a-b+c = 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\Leftrightarrow\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}=\frac{2a+3b-c-2-6+3}{4+9-4}=\frac{45}{9}=5\)
Suy ra : \(\begin{cases}a=11\\b=17\\c=23\end{cases}\)
Mình giải phần 1 ) thôi
\(1)\)
\(a)\frac{3}{2}x-\frac{1}{3}=1-x\)
\(\Rightarrow\frac{3}{2}x+x=1-\frac{1}{3}\)
\(\Rightarrow\frac{5}{2}x=\frac{2}{3}\)
\(\Rightarrow x=\frac{2}{3}:\frac{5}{2}\)
\(\Rightarrow x=\frac{2}{3}.\frac{2}{5}\)
\(\Rightarrow x=\frac{4}{15}\)
b ) \(\left(\frac{1}{3}+x\right)^3=27\)
\(\Rightarrow\frac{1}{3}+x=3\)
\(\Rightarrow x=3-\frac{1}{3}\)
\(\Rightarrow x=\frac{9}{3}-\frac{1}{3}\)
\(\Rightarrow x=\frac{8}{3}\)
Chúc bạn học tốt !!!
a) 2a - 1, b + 3, 5 - 2c TLT với 2 , 3 , 4
=>\(\frac{2a-1}{2}=\frac{b+3}{3}=\frac{5-2c}{4}=k\left(kthuocZ\right)\)
=>a=2k+1,b=3k-3,c=(5-4k)/2
Thay vao a+b-c=2 tim duoc k, chu y k thuoc Z, tu do suy ra a,b,c.
b) Tuong tu.
a: Theo đề, ta có:
\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)
Do đó: a=-1; b-1=-8/3; c-2=-10/3
=>a=-1; b=-5/3; c=-4/3
b: Theo đề, ta có:
\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)
Do đó: a=-5/4; b-1=-15/8; c-2=-3/2
=>a=-5/4; b=-7/8; c=1/2
Ta có: A(1)=6 => a.12+b.1+c=6
=> a+b+c=6
Theo đầu bài ta có: \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và a+b+c=6
Áp dụng ...............
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{6}{6}=1\)
Khi đó: a=3.1=3
b=2.1=2
c=1.1=1
Vậy.................
Nhớ k nhé :))
Ta có :
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{2}\Rightarrow\frac{b}{15}=\frac{c}{6}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a-b+c}{10-15+6}=\frac{14}{1}=14\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=14\Rightarrow a=140\\\frac{b}{15}=14\Rightarrow b=210\\\frac{c}{6}=14\Rightarrow c=84\end{cases}}\)
\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{2}\Rightarrow\frac{b}{15}=\frac{c}{6}\)
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a-b+c}{10-15+6}=\frac{14}{1}=14\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=14\Rightarrow a=140\\\frac{b}{15}=14\Rightarrow b=210\\\frac{c}{6}=14\Rightarrow c=84\end{cases}}\)
Vậy ...