\(Q=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
a). Rút gọn biểu thức;
b). Tìm điều kiện của x để \(\left|Q\right|\)=1;
c). Tìm số tự nhiên x để Q nhận giá trị nguyên;
d). Tìm điều kiện của x để Q nhận giá trị âm;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b)
\(P=A-B=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9-x^2+9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(2-x\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x}{x-3}\)
c)
Để \(P\le1\) thì:
\(-\dfrac{x}{x-3}\le1\)
\(\Leftrightarrow\dfrac{x}{x-3}\ge1\\ \Leftrightarrow x-3-x\ge1\\ \Leftrightarrow-3\ge1\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\le1\)
`HaNa♬D`
Làm lại nha cái này đúng, kia sai nha=)
b)
Với \(\left\{{}\begin{matrix}x\ne3\\x\ne2\end{matrix}\right.\)
\(P=A-B=(\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)})+\dfrac{2x-1}{x-3}\\ =\left(\dfrac{2x-9-x^2-9}{\left(x-3\right)\left(x-2\right)}\right)+\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}+\dfrac{2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2+2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x-1}{x-3}\)
c)
Để P\(\ge1\) thì:
\(\dfrac{x-1}{x-3}\ge1\\ \Leftrightarrow x-3-x+1-1\ge0\\ \Leftrightarrow-3\ge0\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\ge1\)
`HaNa☘D`
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
\(M=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}:2\sqrt{\dfrac{3-x+2x}{3-x}}\left(-3\le x< 3;x\ne-1\right)\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}:2\sqrt{\dfrac{x+3}{3-x}}\\ M=\dfrac{\sqrt{x+3}\left(x+2+x\sqrt{3-x}\right)}{\sqrt{3-x}\left[x+\left(x+2\right)\sqrt{3+x}\right]}\cdot\dfrac{3-x}{2\sqrt{\left(3-x\right)}\sqrt{\left(x+3\right)}}\)
\(M=\dfrac{x+2+x\sqrt{3-x}}{x+\left(x+2\right)\sqrt{3-x}}\cdot\dfrac{\sqrt{3-x}}{2\sqrt{3-x}}\\ M=\dfrac{\left(x+2\right)\sqrt{3-x}+x\left(3-x\right)}{2x\sqrt{3-x}+2\left(x+2\right)\sqrt{3-x}}\\ M=\dfrac{\sqrt{3-x}\left(2x+2\right)}{\sqrt{3-x}\left(2x+2x+4\right)}=\dfrac{2\left(x+1\right)}{4\left(x+1\right)}=\dfrac{1}{2}\)
\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)
\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`
`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`
`=(y(y-2x))/3`
`b,(x^2-y^2)/(x^2-y^2+xz-yz)`
`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`
`=(x+y)/(x+y+z)`
`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`
`=(-(x^2-3x+x-3))/((x-1)(x+1))`
`=(-x(x-3)+x-3)/((x-1)(x+1))`
`=((x-3)(1-x))/((x-1)(x+1))`
`=(3-x)/(1+x)`
`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`
`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`
`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`
`=(3x^2-4x+1)/(2x^2+x-3)`
`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`
`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`
`=(3x-1)/(2x+3)`
a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)
\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)
\(=\dfrac{y\left(y-2x\right)}{3}\)
\(\text{a) }ĐKXĐ:x\ne2;x\ne3\\ \Rightarrow Q=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\\ =\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{2x-9-x^2+9+2x^2+x-4x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-2x+x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x\left(x-2\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
Vậy \(Q=\dfrac{x+1}{x-3}\) với \(x\ne2;x\ne3\)
b) Với \(x\ne2;x\ne3\)
Để \(\left|Q\right|=1\)
thì \(\Rightarrow\left|\dfrac{x+1}{x-3}\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-3}=-1\\\dfrac{x+1}{x-3}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x+1=3-x\\x+1=x-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+x=3-1\\x-x=-3-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\0x=-4\left(\text{ Vô nghiệm }\right)\end{matrix}\right.\\ \Leftrightarrow x=1\left(T/m\right)\)
Vậy để \(\left|Q\right|=1\)
thì \(x=1\)
c) Với \(x\ne2;x\ne3\)
\(\text{Ta có : }Q=\dfrac{x+1}{x-3}=\dfrac{x-3+4}{x-3}\\ =\dfrac{x-3}{x-3}+\dfrac{4}{x-3}=1+\dfrac{4}{x-3}\)
\(\Rightarrow\) Để Q nhận giá trị nguyên
thì \(\Rightarrow\dfrac{4}{x-3}\in Z\)
\(\Rightarrow4⋮x-3\\ \Rightarrow x-3\inƯ_{\left(4\right)}\\ \Rightarrow x-3\in\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị:
Vậy để Q nhận giá trị nguyên
thì \(x\in\left\{-1;1;4;5;7\right\}\)
d) Với \(x\ne2;x\ne3\)
Để \(Q\) nhận giá trị âm
thì \(\Rightarrow\dfrac{x+1}{x-3}< 0\)
Lập bảng xét dấu:
x+1 x-3 -1 3 x+1 x-3 x 0 0 _ _ + + + _ + + _
\(\Rightarrow-1< x< 3\)
Vậy để \(Q\) nhận giá trị âm
thì \(-1< x< 3;x\ne2\)