cho UCLN ( a; b) =1
chứng tỏ UCLN (a+b,a) =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a,b) =1
1) gọi p là một ước nguyên tố của ab, vì p nguyên tố, (a,b) nguyên tố cùng nhau nên p là ước của a (không là ước của b) hoặc ngược lại
=> (a + b) không chia hết cho p (có đúng 1số chia hết cho p, số còn lại ko chia hết nên tổng ko chia hết cho p)
(a+b) và ab ko có ước chung nguyên tố nào => là 2 số nguyên tố cùng nhau tức là UCLN(a+b,ab) = 1
bạn đặt UCLN(a+b,a)=d (\(d\in N\)
=> a+b chia hết cho d kết hợp a chia hết cho d => b chia hết cho d mà UCLN(a,b)=1 nên 1 chia hết cho d=> d=1
vậy UCLN(a+b,a)=1
a)Gọi ƯCLN(a, a - b) = d (với mọi d thuộc N*)
Ta có: a chia hết cho b, b chia hết cho d và a >= b
=> ƯCLN(a, b) = 1 => ƯCLN(a, a - b) = d => 1 = d => d = 1
=> đpcm
b) Gọi ƯCLN(a, a + b) = d (với mọi d thuộc N*)
Ta có: a chia hết cho b, b chia hết cho d và a >= b
=> ƯCLN(a, b) = 1 => ƯCLN(a, a + b) = d => 1 = d => d = 1
=> đpcm
HIELP ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Gọi u là ước chung của a và b <=> u thuộc Ư(a) và u thuộc Ư(b)
<=> u thuộc Ư(a) và u thuộc Ư(a+b) <=> u là ước chung của a và a+b
Suy ra UCLN(a , b) = UCLN(a , a+b)
Mà: UCLN(a , b) = 1 => UCLN(a , a+b) = 1