cho tam giac abc(ab<ac). từ trung điểm d của cạnh bc kẻ 1 đường thảng vuông góc với tia PG góc A cắt tia ab và ac theo thứ tự là m và n. cmr:
a) tam giác amn cân
b) bm+cn
c) cho ab=12cm; ac=18cm. tính am, bm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác ADE và ACB
Góc A chung
AD/AC=AE/AB =1/2
=> Tam giác ADE đồng dạng tam giác ACB
b, tA CÓ : SADE / SACB = (AD/AC)2 = 1/4
=> SADE = 1/4 * SACB = 1/4 *S
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...