K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(\cdot a\ne-4;a\ne0\)

\(\cdot\)Ta có: \(A=\frac{a^2+8.a+16}{a.\left(a+4\right)}=\frac{a^2+4a+4a+16}{a.\left(a+4\right)}=\frac{a.\left(a+4\right)+4.\left(a+4\right)}{a.\left(a+4\right)}=\frac{\left(a+4\right).\left(a+4\right)}{a.\left(a+4\right)}=\frac{a+4}{a}\)

\(\cdot\)Nếu a=-4 => A=\(\frac{-4+4}{-4}=\frac{0}{-4}=0\)

Nếu a=4 => A=\(\frac{4+4}{4}=\frac{8}{4}=2\)

16 tháng 12 2016

Cho tam giác ABC cân tại A, đường cao AH.Gọi M là trung điểm của AB, N là điểm đối xứng với H qua M.

a. Chứng minh ANBH là hình chữ nhật

b. Chứng minh tứ giác ACHN là hình bình hành

c.Tìm điều kiện của tam giác ABC để ANBH là hình vuông.

GIẢI NHANH HỘ MÌNH VỚI

29 tháng 10 2020

\(P=\frac{a+2}{a+3}-\frac{5}{\left(a+3\right)\left(a-2\right)}-\frac{a}{a^2-2a}\)

a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-3\\a\ne2\end{cases}}\)

b)\(=\frac{a+2}{a+3}-\frac{5}{\left(a+3\right)\left(a-2\right)}-\frac{a}{a\left(a-2\right)}\)

\(=\frac{a\left(a-2\right)\left(a+2\right)}{a\left(a+3\right)\left(a-2\right)}-\frac{5a}{a\left(a+3\right)\left(a-2\right)}-\frac{a\left(a+3\right)}{a\left(a+3\right)\left(a-2\right)}\)

\(=\frac{a\left(a^2-4\right)}{a\left(a+3\right)\left(a-2\right)}-\frac{5a}{a\left(a+3\right)\left(a-2\right)}-\frac{a^2+3a}{a\left(a+3\right)\left(a-2\right)}\)

\(=\frac{a^3-4a-5a-a^2-3a}{a\left(a+3\right)\left(a-2\right)}\)

\(=\frac{a^3-a^2-12a}{a\left(a+3\right)\left(a-2\right)}=\frac{a\left(a^2-a-12\right)}{a\left(a+3\right)\left(a-2\right)}\)

\(=\frac{a^2-4a+3a-12}{\left(a+3\right)\left(a-2\right)}=\frac{a\left(a-4\right)+3\left(a-4\right)}{\left(a+3\right)\left(a-2\right)}\)

\(=\frac{\left(a-4\right)\left(a+3\right)}{\left(a+3\right)\left(a-2\right)}=\frac{a-4}{a-2}\)

c) \(8a=8a^2\)

⇔ \(8a^2-8a=0\)

⇔ \(8a\left(a-1\right)=0\)

⇔ \(\orbr{\begin{cases}8a=0\\a-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0\left(ktm\right)\\a=1\left(tm\right)\end{cases}}\)

Với a = 1 =>\(P=\frac{1-4}{1-2}=\frac{-3}{-1}=3\)

14 tháng 12 2022

`A=(x/[x^2-4]+2/[2-x]+1/[2+x]).[x+2]/2`

`a)ĐK: x \ne +-2`

`b)` Với `x \ne +-2` có:

`A=[x-2(x+2)+x-2]/[(x-2)(x+2)].[x+2]/2`

`A=[x-2x-4+x-2]/[x-2]. 1/2`

`A=[-3]/[x-2]`

`c)x=-1` t/m đk `=>` Thay `x=-1` vào `A` có: `A=[-3]/[-1-2]=1`

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

15 tháng 4 2022

\(A=\left(xy^3\right)\left(-\dfrac{3}{4}x^5x^4\right)\cdot\dfrac{8}{9}x^2y^3\)

\(=-\dfrac{2}{3}x^{12}y^6\)

Thay x = -1 và y = 1 vào biểu thức ta được :

\(A=-\dfrac{2}{3}\cdot\left(-1\right)^{12}.1^6=-\dfrac{2}{3}\)

Vậy : Tại x = -1 và y = 1 thì A có giá trị là \(\dfrac{2}{3}\)

15 tháng 4 2022

Cho hỏi cách thu gọn

 

21 tháng 2 2021

A xác định khi 5x-10 ≠0 <=> X ≠ 2b) A = x²-4x+4/5x-10= (x-2)²/5(x-2)= x-2/5c) x= -2018<=> A = -2018-2/5= -2020/5 = -404

Chúc bạn học tốt

a) ĐKXĐ: \(x\ne2\)

b) Ta có: \(A=\dfrac{x^2-4x+4}{5x-10}\)

\(=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}\)

\(=\dfrac{x-2}{5}\)

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

27 tháng 10 2020

a) đk: \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

Ta có: 

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

\(C=\frac{a-2\cdot\left(\sqrt{a}+4\right)-2\cdot\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Ta có: \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(\Rightarrow\sqrt{a}=\sqrt{5}-2\)

Khi đó: \(C=\frac{\sqrt{5}-2}{\sqrt{5}-2+4}=\frac{\sqrt{5}-2}{\sqrt{5}+2}=\frac{\left(\sqrt{5}-2\right)^2}{1}=9-4\sqrt{5}\)

27 tháng 10 2020

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

a) ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

\(=\frac{a}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}+4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Với \(a=9-4\sqrt{5}\)( tmđk )

\(C=\frac{\sqrt{a}}{\sqrt{a}+4}=1-\frac{4}{\sqrt{a}+4}\)

\(C=1-\frac{4}{\sqrt{9-4\sqrt{5}}+4}\)

\(=1-\frac{4}{\sqrt{5-4\sqrt{5}+4}+4}\)

\(=1-\frac{4}{\sqrt{\left(\sqrt{5}-2\right)^2}+4}\)

\(=1-\frac{4}{\left|\sqrt{5}-2\right|+4}\)

\(=1-\frac{4}{\sqrt{5}-2+4}\)

\(=1-\frac{4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}+2-4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}-2}{\sqrt{5}+2}\)

\(=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}=9-4\sqrt{5}\)

10 tháng 1 2022

a,ĐKXĐ:\(\left\{{}\begin{matrix}x-4\ne0\\x+4\ne0\\x^2-16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne\pm4\end{matrix}\right.\Leftrightarrow x\ne\pm4\)

b,\(\dfrac{4}{x-4}+\dfrac{3}{x+4}.\dfrac{6x}{x^2-16}=\dfrac{4}{x-4}+\dfrac{18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x+4\right)^2+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x^2+8x+16\right)+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+32x+64+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+50x+64}{\left(x-4\right)\left(x+4\right)^2}\)