K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

a)

Vì $AB,AC$ là tiếp tuyến của $(O)$ nên \(OB\perp AB, OC\perp AC\)

\(\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0\)

Tứ giác $ABOC$ có tổng 2 góc đối \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\) nên $ABOC$ là tứ giác nội tiếp, hay $A,B,O,C$ đồng viên (1)

Mặt khác:

$I$ là trung điểm của dây cung $MN$ nên $OI\perp MN$

\(\Rightarrow \widehat{AIO}=90^0\)

Tứ giác $ABIO$ có \(\widehat{ABO}=\widehat{AIO}(=90^0)\) và cùng nhìn cạnh $AO$ nên $ABIO$ là tứ giác nội tiếp, hay $A,B,I,O$ đồng viên (2)

Từ (1); (2) suy ra $A,B,I,O,C$ đồng viên (hay cùng thuộc 1 đường tròn)

b)

Áp dụng định lý Pitago cho tam giác $ABO$ vuông tại $B$:

\(AB=\sqrt{AO^2-BO^2}=\sqrt{(3R)^2-R^2}=2\sqrt{2}R\)

Xét tam giác $ABM$ và $ANB$ có:

\(\widehat{A}\) chung

\(\widehat{ABM}=\widehat{ANB}\) (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó, trong TH này chính là tiếp tuyến $BA$ và dây cung $BM$)

\(\Rightarrow \triangle ABM\sim \triangle ANB(g.g)\Rightarrow \frac{AB}{AN}=\frac{AM}{AB}\)

\(\Leftrightarrow AM.AN=AB^2=8R^2\)

\(\Leftrightarrow AM(AM+MN)=8R^2\Leftrightarrow AM(AM+R)=8R^2\)

\(\Rightarrow AM=\frac{-1+\sqrt{33}}{2}R\)

\(AN=AM+MN=\frac{1+\sqrt{33}}{2}R\)

c)

\(OB=OC=R\)

\(AB=AC\) (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow OA\) là trung trực của $BC$

\(\Rightarrow OA\perp BC\) tại $H$ \(\Rightarrow \widehat{AHK}=90^0\)

Tứ giác $AKIH$ có \(\widehat{AIK}=\widehat{AHK}=90^0\) và cùng nhìn cạnh $AK$ nên $AKIH$ là tứ giác nội tiếp

\(\Rightarrow OI.OK=OH.OA\)

d)

Xét tam giác vuông $ABO$ vuông tại $B$ có đường cao $BH$, áp dụng công thức hệ thức lượng ta có \(OH.OA=OB^2=R^2=OM^2\)

\(OI.OK=OH.OA\) (cmt)

\(\Rightarrow OI.OK=OM^2\) \(\Rightarrow \frac{OI}{OM}=\frac{OM}{OK}\)

Xét tam giác $OMI$ và $OKM$ có:

\(\widehat{O}\) chung

\(\frac{OI}{OM}=\frac{OM}{OK}\)

\(\Rightarrow \triangle OMI\sim \triangle OKM(c.g.c)\Rightarrow \widehat{OMI}=\widehat{OKM}\)

\(\Leftrightarrow \widehat{OMI}=90^0-\widehat{KMI}\Leftrightarrow \widehat{OMI}+\widehat{KMI}=90^0\)

\(\Leftrightarrow \widehat{KMO}=90^0\Rightarrow KM\perp OM\). Do đó $KM$ là tiếp tuyến của $(O)$. Hoàn toàn tương tự với $KN$ ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Hình vẽ:

Ôn tập góc với đường tròn

14 tháng 5 2021

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi 

18 tháng 8 2019

A B C O M N E I K O'

a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).

b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)

Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng

Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK

Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M)  (2)

Từ (1) và (2) suy ra IM = KA (đpcm).

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN