Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho OM = 2R . Từ M vẽ hai tiếp tuyến MB và MA với đường tròn (A; B là hai tiếp điểm) . Lấy 1 điểm N tùy ý trên cung nhỏ AB. Gọi I , K , H lần lượt là hình chiếu vuông góc của n trên AB , AM , BM.
1. Tính diện tích tứ giác MAOB theo R
2. Chứng minh : góc NHI = góc NBA
3. Gọi E là giao điểm của AN và HI ,F là giao điểm của BN và IK. Chứng minh tứ giác IENF nội tiếp được trong đường tròn
4. Giả sử O, N , M thẳng hàng. Chứng minh 2R2 = NA2 + NB2
1: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
Gọi G là giao điểm của OM và AB
=>MO vuông góc với AB tại G
\(AM=R\sqrt{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)
\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)
\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)
2: Xét tứ giác NHBI có
\(\widehat{NHB}+\widehat{NIB}=180^0\)
Do đó: NHBI là tứ giác nội tiếp
Suy ra: \(\widehat{NHI}=\widehat{NBA}\)