cho tam giác ABC cân tại A
P thuộc AB ; Q thuộc AC
AP = AQ
CP cắt BQ = O : CM
a) tam giác OBC cân
b) O cách đều AB, AC
c) AO vuoog góc BC ; AO qua trung điểm BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)
\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
mà AC=AB(ΔBAC cân tại A)
nên AD=DC=AE=EB
Xét ΔADE có AE=AD(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔADB và ΔAEC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
AD=AE(cmt)
Do đó: ΔADB=ΔAEC(c-g-c)
c) Ta có: ΔAED cân tại A(gt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BCDE có ED//BC(cmt)
nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)
nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)
\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)
b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)
\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)
\(\Rightarrow\Delta BCE\) cân tại E
Xét tam giác BKC vuông tại K và tam giác CHB vuông tại H
Ta có : BC là cạnh huyền chung
góc KBC = góc HCB ( tam giác ABC cân tại A )
Nên tam giác BKC = tam giác CHB ( cạnh huyền - góc nhọn )
=> góc KCB = góc HBC ( 2 góc tương ứng )
=> tam giác IBC cân tại I
giải:
Vì tam giác ABC cân tại A=>AB=AC, góc ABC= góc ACB
Xét tam giác BAH và tam giác CAK có:
tam giác BAH cân tại H
----------- CAK --------- K
cạnh huyền AB=AC
góc nhọn A chung
=> Tam giác BAH = tam giác CAK ( cạnh huyền-góc nhọn)
=> góc ABH= góc ACK
Mà góc ACB= góc ABC
=>góc IBC= góc ICB
=> tam giác BIC cân tại I
A C B H K I
Đặt x=góc BAC
=>góc ABC=góc ACB=90 độ-1/2*x
góc DAC=góc ACD=x
góc ABC=góc BDC=90 độ-x/2
=>góc DCB=180 độ-2*góc BAC=x
góc ACD+góc DCB=góc ABC=90 độ-x/2
=>5/2*x=90
=>x=36
=>góc BAC=36 độ
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>EB=DC
AE+EB=AB
AD+DC=AC
mà EB=DC và AB=AC
nên AE=AD
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
Hình thang BEDC có \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Giải:
a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)
Xét tam giác AMB và tam giác AMC có:
+<MAC=<MAB(AM là phân giác của <BAC)
+AB=AC(cmt)
+AM chung
=>tam giác AMB=tam giác AMC(g.c.g)
b)Xét tam giác AEM và tam giác AFM có:
+AM chung
+<MAE=<MAP(AM là phân giác của <BAC)
+<AEM=<APM=90°(gt)
=>tam giác AEM=tam giác AFM (ch-gn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AFE là tam giác cân.
A B C M E F
a,Xét ∆AMB và ∆AMC có :
AB = AC (giả thiết)
∠BAM = ∠CAM (giả thiết)
AM chung
=> ∆AMB = ∆AMC (c.g.c)
b, Xét 2 tam giác vuông AME và AMF có :
AM chung
∠EAM = ∠FAM (giả thiết)
=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)
=> AE = AF (cặp cạnh tương ứng)
=> ∆AFE cân tại A