Bài 4: Cho tam giác ABC vuông tại A, M là trung điểm của BC; O đồng thời là trung điểm của AM, BN và CP. CMR: a) MN = AB và tam giác MNP = tam giác ABC b) Ba điểm: N, A, P thẳng hàng và A là trung điểm của NP. c) MNvuông góc với AC d) Nếu tam giác ABC có AB = AC. Hãy chứng minh: MA là đường trung trực của đoạn thẳng NP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét tứ giác ABCD:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{o}\) (Tổng các góc trong tứ giác).
Mà \(\widehat{A}= \) \(57^o;\) \(\widehat{C}=\) \(110^o;\) \(\widehat{D}=\) \(75^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{B}=\) \(118^o.\)
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH