cho tam giac DEF; N,M lan luot la trung diem cua DE,DF.Lay A tren tia doi cua MF sao cho MA=ME. B tren tia doi cua tia Ne sao cho NE=NB .chung minh DA=DF; chung minh D la tung diem cua AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* cần các điều kiện về cạnh như:
AB = DE => tam giác ABC = tam giác DEF theo trường hợp hai cạnh góc vuông
BC = EF => tam giác ABC = tam giác DEF theo trường hợp cạnh huyền- cạnh góc vuông
* cần thêm các điều kiện về góc như
Góc C = Góc F => tam giác ABC = tam giác DEF theo trường hợp cạnh góc vuông- góc nhọn kề cạnh ấy
a) Vì DH \(\perp\) EF => \(\widehat{DHE}=90^o\)
mà \(\widehat{EDF}=90^o\) (\(\Delta\)DEF vuông tại D)
do đó \(\widehat{DHE}=\widehat{EDF}\)
Xét \(\Delta\)HED và \(\Delta\)DEF có:
\(\widehat{E}\) chung
\(\widehat{DHE}=\widehat{EDF}\) (cmt)
=> \(\Delta\)HED đồng dạng với \(\Delta\)DEF (g.g)
b) CMTT: \(\Delta\)HFD đồng dạng với \(\Delta\)DFE
=> \(\dfrac{DF}{FE}=\dfrac{HF}{DF}\) (ĐN 2 \(\Delta\) đồng dạng)
=> \(DF^2=HF\cdot FE\) (t/c TLT)
Vì \(\Delta\)DEF vuông tại D (gt)
=> \(DE^2+DF^2=FE^2\) (ĐL Pi-ta-go)
mà DE = 6cm, DF = 8cm (gt)
=> EF = 10cm
Thay EF = 10cm, DF = 8cm vào \(DF^2=HF\cdot FE\), ta có:
\(HF=\dfrac{DF^2}{FE}=\dfrac{8^2}{10}=6,4cm\)
Các cạnh của tam giác DEF là
DE = 5cm
DF = 6cm
EF =8cm k mik nha