Cho M là trung điểm của BC. Trên đường trung trực của BC lấy điểm A khác M.
a, Chứng minh Tam giác AMB=AMC
b. Kẻ MH Vuông góc với AB; MK vuông góc với AC. Chứng Minh AH=AK
c. Chứng minh HK// BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔBDC=ΔCEB
2: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
AB=AC
DO đó: ΔABD=ΔACE
Suy ra: \(\widehat{ABD}=\widehat{ACE}\)
hay \(\widehat{IBE}=\widehat{ICD}\)
3: Xét ΔAIB và ΔAIC có
AB=AC
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
SUy ra: \(\widehat{BAI}=\widehat{CAI}\)
=>AH là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
a. Xét tam giác AIB và AIC, có
IB= IC ( I là trung điểm BC )
AI chung , AIB = AIC ( A là trung trục của BC )
suy ra 2 tam giac tren bang nhau
b. Cm
Tui không vẽ hình đâu nha!
a) Xét Tam giác AMB = Tam giác AMC
Có: BM = MC ( M là trung điểm của BC)
Góc AMB= Góc AMC = 90 độ ( MA là đường trung trực của BC)
AM chung
=> Tam giác AMB = Tam giác AMC
b) Xét Tam giác AHM và Tam giác AKM
có: góc HAM = góc KAM ( vì tg AMB = tg AMC)
AM chung
góc AHM=góc AKM
=> Tg AHM = Tg AKM
=> AH = AK (2 cạnh tương ứng)
c) Chưa nghĩ ra luôn T_T