K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 3

Lời giải:

a/ Xét tam giác $BKA$ và $CKD$ có:
$BK=CK$ (do $K$ là trung điểm $BC$)
$KA=KD$ 

$\widehat{BKA}=\widehat{CKD}$ (đối đỉnh)

$\Rightarrow \triangle BKA=\triangle CKD$ (c.g.c)

$\Rightarrow \widehat{BAK}=\widehat{CDK}$. Mà hai góc này ở vị trí so le trong nên $CD\parallel AB$

b.

Từ $CD\parallel AB, AB\perp AC$ nên $CD\perp AC$

$\Rightarrow \widehat{DCH}=90^0$

Từ $\triangle BKA=\triangle CKD\Rightarrow AB=CD$

Xét tam giác $BAH$ và $DCH$ có:

$AH=CH$ 
$AB=CD$

$\widehat{BAH}=\widehat{DCH}=90^0$

$\Rightarrow \triangle BAH=\triangle DCH$ (c.g.c)

$\Rightarrow \widehat{H_1}=\widehat{H_2}$
Xét tam giác $BAC$ và $DCA$ có:

$AB=CD$

$\widehat{BAC}=\widehat{DCA}=90^0$

$AC$ chung

$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)

$\Rightarrow \widehat{A_1}=\widehat{C_1}$
Xét tam giác $AMH$ và $CNH$ có:

$\widehat{A_1}=\widehat{C_1}$
$\widehat{H_1}=\widehat{H_2}$

$AH=CH$ 

$\Rightarrow \triangle AMH=\triangle CNH$ (g.c.g)

$\Rightarrow MH=NH$

$\Rightarrow MNH$ cân tại $H$

c.

Từ $\triangle BAC=\triangle DCA\Rightarrow BC=DA\Rightarrow BC:2=DA:2\Rightarrow CK=AK$

Xét tam giác $KHA$ và $KHC$ có:

$KH$ chung

$AK=CK$

$AH=CH$

$\Rightarrow \triangle KHA=\triangle KHC$ (c.c.c)

$\Rightarrow \widehat{AKH}=\widehat{CKH}$

$\Rightarrow KH$ là phân giác $\widehat{AKC}$

AH
Akai Haruma
Giáo viên
31 tháng 3

Hình vẽ:

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

17 tháng 2 2018

giải tam giác ABC  vuông cân tại A là sao

28 tháng 3 2019

BC2=170

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023