cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA
a) chứng minh CD//AB
b) Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh Tam giác HMN cân
c) Chứng minh KH là tia phân giác góc AKC
nhanh lên ạ chiều mk đi học rùi
Lời giải:
a/ Xét tam giác $BKA$ và $CKD$ có:
$BK=CK$ (do $K$ là trung điểm $BC$)
$KA=KD$
$\widehat{BKA}=\widehat{CKD}$ (đối đỉnh)
$\Rightarrow \triangle BKA=\triangle CKD$ (c.g.c)
$\Rightarrow \widehat{BAK}=\widehat{CDK}$. Mà hai góc này ở vị trí so le trong nên $CD\parallel AB$
b.
Từ $CD\parallel AB, AB\perp AC$ nên $CD\perp AC$
$\Rightarrow \widehat{DCH}=90^0$
Từ $\triangle BKA=\triangle CKD\Rightarrow AB=CD$
Xét tam giác $BAH$ và $DCH$ có:
$AH=CH$
$AB=CD$
$\widehat{BAH}=\widehat{DCH}=90^0$
$\Rightarrow \triangle BAH=\triangle DCH$ (c.g.c)
$\Rightarrow \widehat{H_1}=\widehat{H_2}$
Xét tam giác $BAC$ và $DCA$ có:
$AB=CD$
$\widehat{BAC}=\widehat{DCA}=90^0$
$AC$ chung
$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)
$\Rightarrow \widehat{A_1}=\widehat{C_1}$
Xét tam giác $AMH$ và $CNH$ có:
$\widehat{A_1}=\widehat{C_1}$
$\widehat{H_1}=\widehat{H_2}$
$AH=CH$
$\Rightarrow \triangle AMH=\triangle CNH$ (g.c.g)
$\Rightarrow MH=NH$
$\Rightarrow MNH$ cân tại $H$
c.
Từ $\triangle BAC=\triangle DCA\Rightarrow BC=DA\Rightarrow BC:2=DA:2\Rightarrow CK=AK$
Xét tam giác $KHA$ và $KHC$ có:
$KH$ chung
$AK=CK$
$AH=CH$
$\Rightarrow \triangle KHA=\triangle KHC$ (c.c.c)
$\Rightarrow \widehat{AKH}=\widehat{CKH}$
$\Rightarrow KH$ là phân giác $\widehat{AKC}$
Hình vẽ: