Cho ΔABC cân tại A, lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC., BD=CE; I giao điểm của BE và CD.
a) DE song song với BC
b) ΔABE = ΔACD
c) ΔBID = ΔCIE
d) AI là phân giác góc BAC
e) AI vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE
góc DBH=góc ECK
=>ΔDHB=ΔEKC
=>BH=CK
b: Tham khảo:
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
a: Xét ΔACB có AD/AB=AE/AC
nên DE//BC
b: Xet ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
=>góc BAI=góc CAI
=>AI là phan giác của góc BAC
e: ΔBCA cân tại A
mà AI là phângíac
nên AI vuông góc BC