Cho tam giác ABC cân tại A, đường cao AH. Kẻ HM vuông góc AB tại M; HN vuông góc AC tại N.
1. Chứng minh: BH = CH.
2. Chứng minh: AMN cân
3. Gọi P là giao điểm của MH với AC, Q là giao điểm của NH với AB, I là trung điểm của PQ. Chứng minh ba điểm N; H; I thẳng hàng.
1: ΔABC cân tại A
mà AH là đường cao
nen H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
2: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A