Tam giác ABC có Â = 25 độ ; Góc B= 65 độ, số đo góc C bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
Lấy E∈AD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.
ΔABEΔ��� cân có ˆBAD=60∘���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.
Thấy ˆBED=ˆEBA+ˆEAB=120∘���^=���^+���^=120∘ (góc ngoài tại đỉnh E� của tam giác ABE��� ) nên ˆBED=ˆBAC(=120∘)���^=���^(=120∘)
Suy ra ΔEBD=ΔABC(c.g.c)⇒ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)
Lại có ˆB1+ˆB3=60∘�1^+�3^=60∘ nên ˆB2+ˆB3=60∘.�2^+�3^=60∘.
ΔBCDΔ��� cân tại B� có ˆCBD=60∘���^=60∘ nên nó là tam giác đều.
Đây nhé!
Ta thấy tam giác ABC có:
Góc ABC+góc ACB+góc BAC=1800(định lí)
=>góc ABC=1800-(góc ACB+góc BAC)=1800-(500+600)=1800-1100=700
Vì BD là tia phân giác của góc ABC (gt)
=>góc ABD=góc CBD=góc ABC/2=700/2=350
Xét tam giác ABD có:
góc BAD+góc ABD+góc ADB=1800 (định lí)
=>góc ADB=1800-(góc BAD+góc ABD)=1800-(600+350)=850
Xét tam giác CBD có:
góc BCD+góc CDB+góc CBD=1800 (đ/lí...)
=>góc CDB=1800-(góc BCD+góc CBD)=1800-(500+350)=950
Vậy...
\(\widehat{C}=90^0\)
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=25^0+65^0+\widehat{C}\)
\(\Rightarrow\) \(\widehat{C}=180^0-25^0-65^0=90^0\)