CHO HÌNH THANG ABCD CÓ AB // CD . CM ; GÓC CAD = GÓC DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi hình thang ABCD là:
\(P=\frac{1}{2}\left(AB+CD\right).BH\)
\(76=\frac{1}{2}\left(6+10\right).BH\)
\(76=8.BH\)
\(BH=9.5\left(cm\right)\)
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
Kẻ BH ^ CD tại H Þ BH = B C 2 = 4cm.
Tính được SABCD = 22cm2
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Từ đỉnh A kẻ đường thẳng song song với BC cắt DC tại E.
Ta có: A E = B C = 50 ( c m )
E C = A B = 40 ( c m )
⇒ D E = 80 − 40 = 40 ( c m )
AE=BC=50(cm) EC=AB=40(cm)
⇒DE=80−40=40(cm)
Tam giác ADE có AD = 30cm; DE = 40cm; AE = 50cm
Nên AD^2 = 30^2 = 900
DE^2 = 40^2 = 1600
A E^2 = 50^2 = 2500
Cho ta AE^2 = A D^ 2 + DE^2
Theo định lí đảo của định lý Py-ta-go thì Δ A D E vuông tại đỉnh D.
Từ đây suy ra ˆ A = ˆ D = 90 0 ⇒ A^=D^=900
⇒ Tứ giác ABCD là hình thang vuông.
Cho hình thang ABCD có AB = 40 cm CD = 80 cm BC = 50 cm AD = 30 cm chứng minh ABCD là hình thang vuông.
Từ A kẻ AE // BC cắt CD tại E => ABCE là hinh bình hành => AC = AB = 40 cm
Và AE = BC = 50 cm, DE = DC - EC = 80 - 40 = 40 cm xét tam giác ADE có AE2 = 2500, DE2 = 1600, DA2 = 900
=> AE2 = DE2 + DA2 => tam giác ADE vuông tại D
Hình thang ABCD có cạnh bên AD Vuông góc đáy CD => hình thang vuông.