K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

Đáp án C

Phép vị tự tâm O tỉ số  ± R ' R

6 tháng 1 2021

Gọi a là bán kính của đường tròn bán kính R

b là bán kính của đường tròn bán kính R'

c là bán kính của đường tròn bán kính R''

Vì đường tròn (O,R) tiếp xúc với đường tròn (O',R') nên OO' = R + R' (Hệ thức giữa đoạn nối tâm và bán kính)

hay a + b = 5 (cm) (1)

Tương tự ta cũng có: b + c = 6 (cm) (2); a + c = 7 (cm) (3)

Trừ 2 vế của (1) với (2) ta được:

a - c = -1 (4)

Cộng 2 vế của (4) với (3) ta được:

2a = 6 \(\Leftrightarrow\) a = 3 

hay R = 3 (cm)

\(\Rightarrow\) b = 5 - a = 5 - 3 = 2 (cm) hay R' = 2 (cm)

\(\Rightarrow\) c = 7 - a = 7 - 3 = 4 (cm) hay R'' = 4 (cm)

Vậy R = 3 cm; R' = 2 cm; R'' = 4 cm

Chúc bn học tốt!

6 tháng 1 2021

Hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau (gt)

Nên R + R' = OO'. Ta có R + R' =5(cm)

Hai đường tròn (O'R') và (O'';R'') tiếp xúc ngoài nhau(gt)

Nên R' +R'' = OO''

Ta có R'+R''=7cm

Hai đường tròn (O;R) và (O'';R'') tiếp xúc ngoài nhau (gt)

Nên R+ R'' = OO''

Ta có R+R''=6cm

do đó R + R' + R' +R'' +R +R'' = 5+7+6

=> 2(R + R' +R'') =18 => R + R' +R'' = 9

Ta có R'' = (R+R' +R'') -(R+R') = 9-5 =4cm

R = (R+R' + R'') - (R + R'') = 9-6=3cm

14 tháng 4 2016

Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :

- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N

- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M 

1 tháng 10 2019

Qua phép vị tự tỉ số k biến đường tròn (O;  R) thành (O’; R).

 Ta có: R’ = R nên |k| = 1

Suy ra: k = 1 hoặc k = -1

* Nếu k= 1 thì phép tự là phép đồng nhất:  ( mâu thuẫn giả thiết)

* Khi k=-1 thì tâm vị tự là trung điểm của  OO’.

Đáp án B

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r    Trong các phát biểu sau phát biểu nào là phát biểu saiA. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + rB. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - rC. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - rD. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + rCâu 2: Gọi d...
Đọc tiếp

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r

    Trong các phát biểu sau phát biểu nào là phát biểu sai

A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r

B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r

C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r

D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r

Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:

A. R - r < d < R + r        

B. d = R - r

C. d > R + r        

D. d = R + r

Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?

A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'

B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'

C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác

D.Trong ba câu trên,chỉ có câu a là câu sai

Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó: 

(1) EO=EC=R và OF=FD=R 

(2) PE là đường cao của tam giác POC

(3) PF là đường cao của tam giác POD

Trong các câu trên: 

A.Chỉ có câu (1) đúng 

B.Chỉ có câu (2) đúng

C.Chỉ có câu (3) đúng 

D.Cả ba câu đều đúng 

E.Tất cả ba câu đều sai

Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng

    Tiếp tuyến của đường tròn tại A là

A. Đi qua A và vuông góc AB

B. Đi qua A và song song BC

C. Đi qua A và song song AC

D. Đi qua A và vuông góc BC

0