Cho hình thang ABCD có đường cao AE, biết AB=6cm; DE=2,4cm; EC= 12cm. Hãy tính diện tích hình thang ABCD biết diện tích hình tam giác ADE là 6cm2.
Giúp mik với, mik đang gấp!!!1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBCD có DC^2=DB^2+BC^2
nên ΔBCD vuông tại B
Kẻ BH vuông góc DC
=>BH=6*8/10=4,8cm
S ABCD=1/2(5+10)*4,8=2,4*15=36cm2
cosABD=cosBDC=8/10=4/5
=>sin ABD=3/5
S ABD=1/2*3/5*5*8=3/10*40=12cm2
Kẻ AK vuông góc BD
=>AK=2*S ABD/BD=2*8/12=16/12=4/3cm
Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60*
ABED là hình bình hành ---> DE = 2 ---> EC = 4
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều
---> BE = EC/2 = 2
Gọi BH là đường cao hình thang.
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*)
---> EH = BE/2 = 1
---> BH^2 = BE^2 - EH^2 = 2^2 - 1 = 3 ---> BH =√ 3 (cm)
Học tốt ^-^
Kẻ hình bình hành ABEC
\(\Rightarrow\) CE trùng DC ; AC//BE ; AC = BE = 6cm
Mà AC ⊥ BD ⇒ BE ⊥ BD
Lại có : \(S_{BDE}=\dfrac{1}{2}BE.BD=\dfrac{1}{2}BH.DE\)
\(\Rightarrow BE.BD=BH.DE\Rightarrow BH=\dfrac{BE.BD}{DE}\)
Xét tam giác BED vuông tại B Có :
\(DE^2=BE^2+BD^2=8^2+6^2=100\)
⇒ DE = 10
Do đó \(BH=\dfrac{BE.BD}{DE}=\dfrac{6.8}{10}=4,8cm\)