K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 1

Lời giải:

Xét tam giác $BAH$ và $BMH$ có:

$\widehat{ABH}=\widehat{MBH}$ (do $BH$ là tia phân giác $\widehat{B}$)

$BH$ chung

$\widehat{BHA}=\widehat{BHM}=90^0$

$\Rightarrow \triangle BAH=\triangle BMH$ (g.c.g)

$\Rightarrow BA=BM$

b.

Từ tam giác bằng nhau phần a suy ra $AH=HM$

Xét tam giác $DAH$ và $DMH$ có:

$DH$ chung

$AH=MH$ (cmt) 

$\widehat{DHA}=\widehat{DHM}=90^0$

$\Rightarrow \triangle DAH=\triangle DMH$ (c.g.c)

$\Rightarrow \widehat{ADH}=\widehat{MDH}$ 

$\Rightarrow DB$ là phân giác $\widehat{ADM}$

 

AH
Akai Haruma
Giáo viên
28 tháng 1

Hình vẽ:

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAE cân tại B

mà BM là phân giác

nên BM vuông góc AE tại M và M là trung điểm của AE

3 tháng 11 2017

A B C O

a) Xét tam giác ABD và tam giác ACE có

góc ADB = góc AEC = 90 độ

AB=AC

góc A: chung

=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)

=> BD=CE và AD=AE

b) Vì AB=AC và AE=AD

=> AB-AE=AC-AD

=> BE=CD

Xét tam giác OEB và tam giác ODC có

góc OEB = góc ODC = 90 độ

BE=CD

góc BOE = góc COD (đối đỉnh)

=> tam giác OEB = tam giác ODC

=> OB=OC

c) Xét tam giác AOB và tam giác AOC có

AB=AC

OB=OC AO: cạnh chung

=> tam giác AOB = tam giác AOC (c.c.c)

=> góc OAB=góc OAC

=> AO la tia phân giác góc BAC 

5 tháng 12 2023

cứu SOS

 

a: Kẻ DK\(\perp\)BC

Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

=>BA=BK

mà \(BA=\dfrac{1}{2}BC\)

nên \(BK=\dfrac{1}{2}CB\)

=>K là trung điểm của BC

Xét ΔDBC có

DK là đường cao

DK là đường trung tuyến

Do đó: ΔDBC cân tại D

b: ΔDBC cân tại D

=>\(\widehat{DBC}=\widehat{DCB}\)

mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)

nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)

=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)

=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)

\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0